Momentum and Impulse

$$
\begin{aligned}
& \vec{F}=m a=m \frac{\Delta \vec{\Delta}}{\Delta t}, \\
& \Delta \vec{p}=\vec{F} \Delta t
\end{aligned}
$$

$\vec{p}=m \vec{v} \quad$ called Momentum
$\vec{F} \Delta t \quad$ called Impulse
If \boldsymbol{F} changes with time, Impulse is time integral of Force:

$$
\Delta \vec{p}=\int_{t_{1}}^{t_{2}} \vec{F} d t
$$

Conservation of Momentum

$2^{\text {nd }}$ Newton's Law for \boldsymbol{n} objects:

$$
\begin{array}{|l|}
\Delta \vec{p}_{1}=\vec{F}_{1} \Delta t \\
\Delta \vec{p}_{2}=\vec{F}_{2} \Delta t
\end{array}
$$

$$
3^{\text {rd }} \text { Newton's Law, }
$$

no external forces!

$$
\begin{aligned}
\vec{F}_{1}+\vec{F}_{2}+\ldots+\vec{F}_{n}=0 \\
\Delta\left(\vec{p}_{1}+\vec{p}_{2}+\ldots+\vec{p}_{n}\right)=0 \\
\vec{p}_{1}+\vec{p}_{2}+\ldots+\vec{p}_{n}=\text { const }
\end{aligned}
$$

Total Momentum of Isolated System is Conserved

Homework

Problem 1

A tennis ball of mass $\boldsymbol{m}=\mathbf{5 7} \boldsymbol{g}$ with initial velocity $\boldsymbol{v}=\mathbf{3 0} \mathbf{m} / \mathrm{s}$, directed towards the wall bounces off it elastically. Using high-speed camera, it was determined that the collision time was about $\boldsymbol{t}=\mathbf{1 m s}$ (1 millisecond). Estimate the maximum force between the wall and the ball.

Problem 2

A block of mass $\boldsymbol{M}=\mathbf{1 0 0} \mathbf{g}$ moves with speed of $\boldsymbol{v}=\mathbf{1 0} \mathrm{m} / \mathrm{s}$ on a frictionless flat surface. A bullet of mass $m=8 \mathrm{~g}$ that moves with speed $\boldsymbol{u}=700 \mathrm{~m} / \mathrm{s}$ in the opposite direction, hits the block and gets stuck in it. What will be the velocity of the block after this collision (include direction in your response)?

