Rotational Motion

Angle (in radians): length of ark over radius

$$
\Delta \alpha=\frac{\Delta l_{a r c}}{R}
$$

Angular velocity:

$$
\varpi=\frac{\Delta \alpha}{\Delta t}
$$

It is related to regular (linear) speed of rotational motion as:

$$
v=\frac{\Delta l_{a r c}}{\Delta t}=\varpi R
$$

Centripetal acceleration

When moving along a circular path of radius R, with constant speed v, an object has acceleration directed towards the center, called Centripetal Acceleration:

$$
a=\frac{v^{2}}{R}
$$

Homework

Problem 1

A propeller of regional airplane ATR-72 spins at 1200 RPM (revolutions per minute).
a) Find the speed of propeller's tip with respect to the aircraft. Propeller radius is $R=2 \mathrm{~m}$.
Don't forget to convert units of ω to $1 / \mathrm{s}$
a) Find the total speed of the propeller's tip with respect to air, if the speed of the airplane is $v=500 \mathrm{~km} / \mathrm{hr}$. Pay attention to directions of rotational and translational motion!

Problem 2

Find the speed and period of orbital motion of the International Space Station around the Earth. Note that its orbit is located $\mathbf{4 0 0} \mathbf{~ k m}$ above the ground. This is much smaller than the Earth radius $\mathbf{R}=\mathbf{6 3 7 0} \mathbf{~ k m}$. This means that you can assume the gravitational force acting on the space station to be the same as on Earth surface, $\mathbf{M g}$.

