Statics

Consider a rigid object in equilibrium. Since it has zero acceleration, and no rotation, the sum of all forces and torques applied should be 0 :

$$
\begin{aligned}
& \sum \vec{F}=0 \\
& \sum \vec{T}=0
\end{aligned}
$$

$$
\text { Torque T = F (Force) } \times \mathrm{L} \text { (Length) }
$$

Example: whiteboard on two holders:
We can choose any "axis of rotation" and calculate the torque with respect to it.

- With respect to point P :
$T_{P}=m g l_{1}-N_{2}\left(l_{1}+l_{2}\right)=0$
Note that "clock-wise" is positive direction.
Solving Eq., we obtain: $N_{2}=\frac{m g l_{1}}{l_{1}+l_{2}}$
- Similarly, with respect to point O:
$T_{0}=-m g l_{2}+N_{1}\left(l_{1}+l_{2}\right)=0$
$N_{1}=\frac{m g l_{2}}{l_{1}+l_{2}}$ note that $N_{1}+N_{2}=m g$

Homework

Problem 1

a) A ruler is used to balance two weights as shown in figure 1. The ruler total length is 30 cm , it is supported at its center (at 15 cm mark). Mass M1=30 g , is located at 10 cm mark. The other mass, M 2 is at 30 cm mark. Find M 2
b) Now the mass M1 is moved to 0 cm mark.M2 is still at 30 cm . After that, you can balance the ruler with both masses by placing the support at 10 cm mark. Find the mass of the ruler. Hint: imaging all mass of the ruler to be concentrated at its center, don't try to "break" ruler onto two parts - it's a hard way

Problem 2 (experimental) Use a ruler and a pencil to find the ratio of masses of US quarter and US penny. You may use other two coins if you wish, Its OK to use several identical coins. Make a picture of your experiment, describe procedure and give your results.

