Rotation of a Solid Body

Angle (in radians): length of ark over radius

$$
\Delta \theta=\frac{\Delta l}{R}
$$

Angular velocity: $\quad \omega=\frac{\Delta \theta}{\Delta t}$

It is related to regular (linear) speed of rotational motion as:

$$
v=\frac{\Delta l_{a r c}}{\Delta t}=\varpi R
$$

Kinetic energy of a rotating object

In a rotating rigid body, the further you are from the center, the larger is your speed!
Let's "break" a rotating object onto little pieces and add their kinetic energies together:

$$
K=\sum_{i} \frac{m_{i} v_{i}^{2}}{2}=\sum_{i} \frac{m_{i}\left(\omega r_{i}\right)^{2}}{2}=\frac{\omega^{2}}{2} \sum_{i} m_{i} r_{i}^{2}
$$

Here each piece has its own index ("i"), mass m_{i}, and speed v_{i}. However, they all have the same angular velocity since they are part of a rigid body.

Therefore, the formula for rotational kinetic energy is

$$
K=\frac{I \omega^{2}}{2}
$$

Here $I=\sum_{i} m_{i} r_{i}^{2}$ is called moment of inertia (r_{i} is the distance of piece "i" from the axis of rotation).
You can easily find moment of inertia of a thin ring (or hoop, or bicycle wheel): most of its mass M is at the same distance R from the center, so

$$
I_{\text {ring }}=M R^{2}
$$

Homework

Problem 1

a) Moment of inertia of a uniform disk of mass M and radius R is $I_{\text {disk }}=M R^{2} / 2$. Find the total kinetic energy of a disk as it moves with linear speed V , without sliding. Note that its kinetic energy consists of regular ("translational") and rotational one.
b) The disk starts rolling down a hill without sliding, with zero initial speed. What will be its final speed on the ground level, if the hill is 10 m high , and there is no energy loss?

Problem 2

Consider a vehicle of mass M, with its wheels accounting for 50% of that mass. What well be a kinetic energy of this vehicle when it moves at peed V? Assume the wheels to be uniform disks as in problem 1.

