Homework 11.

To solve the problems below I would recommend to look up once again what is the radiant intensity and irradiance. For problem 1 you will probably need the expression for the solid angle of a cone. I had given it to you before, but, just to remind - the solid angle of a cone with the apex angle Θ can be calculated as:

$$
\Omega=2 \pi\left(1-\cos \left(\frac{\Theta}{2}\right)\right)
$$

Problems:

1. An image of the bulb is created on the screen with a converging lens (see image below). Diameter of the lens is 10 cm , distance from the lamp to the lens is 2 m , radiant intensity of the lamp is $0.2 \mathrm{~W} / \mathrm{sr}$, diameter of the bulb's image is 5 cm . Find the irradiance of the screen within the bulb's image. (We assume that the bulb, like a point source, emits light in all directions).
2. An image of the bulb is created on the screen with a converging lens (see image below) with the magnification of 2 . How the irradiance within the image will change if we change the places of the screen and the bulb?

3. Objects which are 10 m away from the lamp post are illuminated 4 times less than objects which are just 5 m away. Why if we stand 10 m away from the lamp post it looks as bright as from the 5 meter distance?
