

Light Interaction with Non-Luminescent Matter

<u>Combination</u> of transmission, reflection, and absorption:

T%+R%+A%=100%

- No material is 100% transparent.
- No material is 100% absorbing either.

Absorption

disappearance of a light wave

- The <u>energy of a light wave is taken up by matter</u> and in most cases converted into heat.
- Dark opaque objects absorb most of the incident light.

Vantablack – one of the darkest substances known, absorbing up to 99.965% of visible light!

Transparent and translucent objects absorb some part of the incident light.

Absorption of Sunlight by Water

Absorption Spectrum

Absorption of light can happen when the photon energy (i.e. *frequency*) matches one of the allowed transitions between energy levels of that particular atom.

Absorption Spectrum of the Sun

Sunlight Filtered through Atmosphere

Absorption of sunlight by various gas molecules that are present in the Earth's atmosphere is seen as absorption bands in the Sun spectrum.

Guess an object !

Incident Light

Transmitted%+Reflected%+Absorbed%=100%

What color is this tulip? And why?

Indoor and outdoor lighting can be quite different!

