Distance, Time, Speed

d - distance travelled

v – average speed

 $\Delta t = t_{final} - t_{initial} - travel time$ Δ (Delta) stands for "change"

Physical Quantity	Standard Units (metric system)	Other Units
Length, distance (d)	meter (m)	kilometer: 1km = 1000m centimeter: 1cm = 0.01 m 1 mile \approx 1.6 km; 1ft \approx 0.3m; 1inch \approx 2.5 cm
Time (<mark>t</mark>)	second (s)	hour: 1hr = 3600 s
Speed (<mark>s</mark>)	m/s	km/hr, mile/hr (mph) cm/s, km/s

Homework 2

Problem 1. Below is the schedule of *"Acela"* train that runs from Washington DC to New York City:

Washington (0 mi)	5:00 am	
Baltimore (41 mi)	5:30 am	
Philadelphia (135 mi)	6:30 am	
New York (226 mi)	7:42 am	

Find the average speed (in miles per hour, mph) for each of the three segments, and for the whole trip. Convert your results first to km/hr, and then to meters per second (m/s):

Segment	Speed (mph)	Speed (km/hr)	Speed (m/s)
Washington-Baltimore			
Baltimore-Philadelphia			
Philadelphia-NYC			
Washington-NYC			

Problem 2. Measure speed of a moving object (toy, rain drop on a window, a pet...). Sketch your experiment, record your data and compute the result (both in the units in which you made your measurements, and in m/s).