Distance, Time, Speed

		d-distance travelled
v - average speed	$v=\frac{d}{\Delta t}$	$\Delta t=t_{\text {final }}-t_{\text {initial }}-\text { travel time }$ Δ (Delta) stands for "change"
Physical Quantity	Standard Units (metric system)	Other Units
Length, distance (d)	meter (m)	kilometer: $1 \mathrm{~km}=1000 \mathrm{~m}$ centimeter: $1 \mathrm{~cm}=0.01 \mathrm{~m}$ 1 mile $\approx 1.6 \mathrm{~km} ; 1 \mathrm{ft} \approx 0.3 \mathrm{~m} ; 1$ inch $\approx 2.5 \mathrm{~cm}$
Time (t)	second (s)	hour: $1 \mathrm{hr}=3600 \mathrm{~s}$
Speed (s)	m / s	$\mathrm{km} / \mathrm{hr}$, mile/hr (mph) $\mathrm{cm} / \mathrm{s}, \mathrm{km} / \mathrm{s}$.

Homework 2

Problem 1. Below is the schedule of "Acela" train that runs from Washington DC to New York City:

Washington $(0 \mathrm{mi})$	$5: 00 \mathrm{am}$
Baltimore $(41 \mathrm{mi})$	$5: 30 \mathrm{am}$
Philadelphia $(135 \mathrm{mi})$	$6: 30 \mathrm{am}$
New York $(226 \mathrm{mi})$	$7: 42 \mathrm{am}$

Find the average speed (in miles per hour, mph) for each of the three segments, and for the whole trip. Convert your results first to $\mathrm{km} / \mathrm{hr}$, and then to meters per second (m / s):

Segment	Speed (mph)	Speed $(\mathrm{km} / \mathrm{hr})$	Speed $(\mathrm{m} / \mathrm{s})$
Washington-Baltimore			

Baltimore-Philadelphia
Philadelphia-NYC

Washington-NYC

Problem 2. Measure speed of a moving object (toy, rain drop on a window, a pet...). Sketch your experiment, record your data and compute the result (both in the units in which you made your measurements, and in m / s).

