A little something to help to remember what oxidation and reduction is.

$$
\begin{aligned}
& \text { O xidation } \\
& \text { Is } \\
& \text { Loss of erectrons } \\
& R \text { eduction } \\
& \text { Is } \\
& G \text { ain of electrons }
\end{aligned}
$$

How to identify if we have redox reduction? You should look if the elements changed their oxidation numbers:

$$
\mathrm{C}^{0}+\mathrm{O}_{2}{ }^{0} \rightarrow \mathrm{C}^{+4} \mathrm{O}_{2}^{-2}
$$

4 electrons move from C towards the two O atoms. We say C is oxidized. The carbon had oxidation number 0 , in the product $\left(\mathrm{CO}_{2}\right)$ carbon gains the electrons, oxidation number of the carbon +4 . Oxygen is reduced, the oxidation number is going down from 0 in O_{2} to -2 in CO_{2}.

Remember that the number of electron lost has to be equal to the number of electron gained in the reaction. We cannot create electrons from nothing. Balancing the number of electrons can help us to find out the coefficients to balance the whole chemical equation.

Redox chemical reactions can be balances by looking at the transfer of electrons:

$$
\mathrm{Al}+\mathrm{O}_{2} \rightarrow \mathrm{Al}_{2} \mathrm{O}_{3}
$$

$$
4 \mathrm{Al}+3 \mathrm{O}_{2} \rightarrow 2 \mathrm{Al}_{2} \mathrm{O}_{3}
$$

We can break redox reaction into two half- equations, where we show the oxidation and reduction process separately. Al loses 3 electrons, we have oxidation half of the reaction. Oxygen gains 4 electrons in the reduction half of the equation (if we have homonuclear molecule like $\mathrm{O}_{2}, \mathrm{H}_{2}, \mathrm{Cl}_{2}$, we can use coefficient 2 right away to balance number of atoms), each O in O_{2} gains 2 electrons, $2 \times 2=4$. To balance the number of electrons we have to multiply the first half-reaction by 4 , and the second half-reaction by 3 , that way we lost and gained the same number of electrons 12 . 4 and 3 our main coefficient numbers, 4 for $\mathrm{Al}, 3$ for O_{2}.

This method of finding coefficients can work well for balancing complicated reactions:

Mn gains electrons
Cl loses electrons
The number of electrons pained and
cos tho shot ld be equal. Ne can
of the reaction by 2 and
"Cl" hale of the reaction. our 5 . That way we know cen to for Mn and ce

Most commonly in the text books you will see that the number of lost electrons will be written down on the right side of the equation:

$$
\begin{aligned}
& \mathrm{Al}^{0}+\mathrm{O}_{2}^{0} \rightarrow \mathrm{Al}_{2}^{+3} \mathrm{O}_{3}^{-2} \\
& \mathrm{Al} \rightarrow \mathrm{Al}^{+3}+3 \mathrm{e} \\
& \mathrm{O}_{2}+4 \mathrm{e} \rightarrow 2 \mathrm{O}_{3}^{-2}
\end{aligned}
$$

Questions

1. Insert the missing equation coefficients:
```
?Mg+O
?Fe+3Cl}2=?\mp@subsup{\textrm{FeCl}}{3}{
? Al + ? S = Al }\mp@subsup{\textrm{S}}{3}{
? Cu + ? O}\mp@subsup{\textrm{O}}{2}{}=
```

2. Insert the missing equation coefficients, use the electron balance and show your work:
$\mathrm{P}+\mathrm{N}_{2} \mathrm{O}=\mathrm{N}_{2}+\mathrm{P}_{2} \mathrm{O}_{5}$
$\mathrm{NH}_{3}+\mathrm{O}_{2}=\mathrm{NO}+\mathrm{H}_{2} \mathrm{O}$
