

anion	anion name	acid	acid name
CI-	chloride ion	HCI	hydrochloric acid
CO ₃ ²⁻	carbonate ion	H ₂ CO ₃	carbonic acid
NO ₂ -	nitrite ion	HNO ₂	nitrous acid
NO ₃ -	nitrate ion	HNO ₃	nitric acid
SO ₃ ²⁻	sulfite ion	H ₂ SO ₃	sulfurous acid
SO ₄ ²⁻	sulfate ion	H ₂ SO ₄	sulfuric acid
CH ₃ COO-	acetate ion	CH₃COOH	acetic acid

formula	systematic name	common name
CuCl	copper(I) chloride	cuprous chloride
CuCl ₂	copper(II) chloride	cupric chloride
Hg ₂ Cl ₂	mercury(I) chloride	mercurous chloride
FeS	iron(II) sulfide	ferrous sulfide
Fe ₂ S ₃ s Photo by Unknown Author is lice	iron(III) sulfide	ferric sulfide

MgSO₄ magnesium sulfate

KNO₃ potassium nitrate

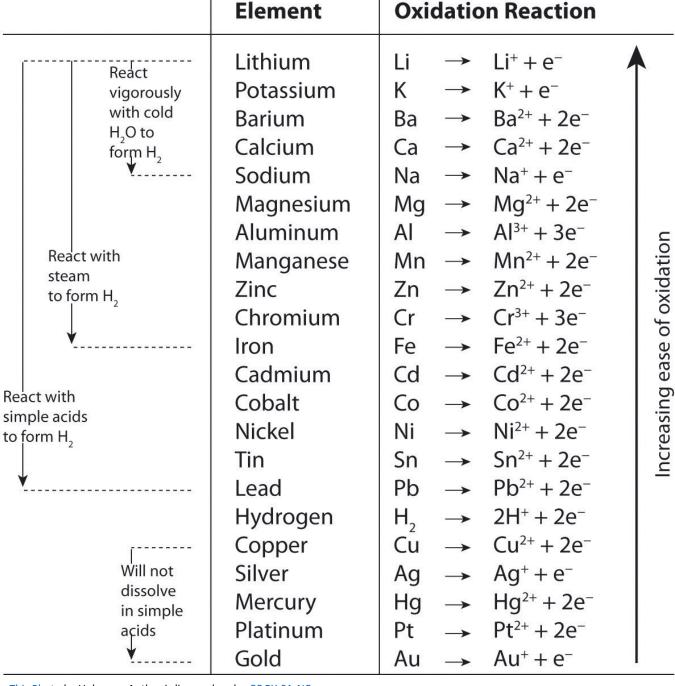
Salts can be produced by...

1. Neutralization reactions $H_2SO_4 + 2KOH \rightarrow K_2SO_4 + 2H_2O$

2. Acids react with basic oxides
$$H_2SO_4 + CuO \rightarrow CuSO_4 + H_2O$$

- 3. Bases react with acidic oxides $Ca(OH)_2 + CO_2 \rightarrow CaCO_3(s) + H_2O$
- 4. Basic and acidic oxides can react with each other $CaO + SO_3 \rightarrow CaSO_4$
- 5. Acids react with salt, the product is another salt. $H_2S + CuSO_4 \rightarrow CuS(s) + H_2SO_4$

- 6. Reaction of Alkali with salts $3\text{NaOH} + \text{FeCl}_3 \rightarrow \text{Fe(OH)}_3(s) + 3\text{NaCl}$
- 7. Reaction between two different salt (double displacement reactions)


 NaCl + AgNO₃ → AgCl (s) + NaNO₃

8. Metals react with acids
$$H_2SO_4 + Fe \rightarrow FeSO_4 + H_2(g)$$

9. Metals react with nonmetals $2K + Cl_2 \rightarrow 2KCl$

10. Metals react with salts. More active metal replace less active metal.

$$Zn + CuSO_4 \rightarrow ZnSO_4 + Cu$$

This Photo by Unknown Author is licensed under CC BY-SA-NC

https://youtu.be/eGG3EI4mwok

https://youtu.be/Z80y2dWGSAU

https://youtu.be/vOpMa-fJZNQ

A salt can be described as a product of neutralization reaction.

If strong base reacts with a strong acid, neutral salt is formed. In other words if the solution of this salt has neutral pH, the salt is neutral. Examples, NaCl.

When a strong base reacts with a weak acid, a basic salt is formed (solution of this salt will be slightly basic). NaClO When strong acid reacts with a weak base, the product will be acidic salt (the salt solution will be slightly acidic).

NH₄NO₃

STRONG ACIDS: HCl, HBr, HI, HClO₄, HNO₃, H₂SO₄ STRONG BASES: LiOH, NaOH, KOH, RbOH, CsOH, Ca(OH)₂, Sr(OH)₂, Ba(OH)₂.

https://youtu.be/lggngxY3riU