MATH 10

ASSIGNMENT 5: SIGNED AREA

OCT 23, 2022

Signed Area

Let $A B C D$ be a parallelogram on the plane, with vertex A at the origin and vertices $D=\left(x_{1}, y_{1}\right)$, $B=\left(x_{2}, y_{2}\right)$, so that its sides are vectors

$$
\mathbf{v}=\overrightarrow{A D}=\left[\begin{array}{l}
x_{1} \\
y_{1}
\end{array}\right] \quad \mathbf{w}=\overrightarrow{A B}=\left[\begin{array}{l}
x_{2} \\
y_{2}
\end{array}\right]
$$

In this case, the area of the parallelogram can be computed as follows:

$$
\begin{equation*}
S_{A B C D}=\left|x_{1} y_{2}-y_{1} x_{2}\right| \tag{1}
\end{equation*}
$$

(we will prove this in problem 1 below). We will introduce a new kind of "product" for two vectors \mathbf{v}, \mathbf{w} in \mathbb{R}^{2} by

$$
\begin{equation*}
\mathbf{v} \wedge \mathbf{w}=x_{1} y_{2}-y_{1} x_{2} \in \mathbb{R} \tag{2}
\end{equation*}
$$

if \mathbf{v}, \mathbf{w} are as above (symbol \wedge reads "wedge"). Thus, $S_{A B C D}=|\overrightarrow{A D} \wedge \overrightarrow{A B}|$. Note that as with the dot product, the wedge product is a number, not a vector.

One can think of $\mathbf{v} \wedge \mathbf{w}$ as "signed area":

$$
\mathbf{v} \wedge \mathbf{w}= \begin{cases}S_{A B C D}, & \text { if rotation from } \mathbf{v} \text { to } \mathbf{w} \text { is counterclockwise } \\ -S_{A B C D}, & \text { if rotation from } \mathbf{v} \text { to } \mathbf{w} \text { is clockwise }\end{cases}
$$

The wedge product (and thus, the signed area) is in many ways easier than the usual area. Namely, we have:

1. It is linear: $\left(\mathbf{v}_{1}+\mathbf{v}_{2}\right) \wedge \mathbf{w}=\mathbf{v}_{1} \wedge \mathbf{w}+\mathbf{v}_{2} \wedge \mathbf{w}$
2. It is anti-symmetric: $\mathbf{v} \wedge \mathbf{w}=-\mathbf{w} \wedge \mathbf{v}$

Homework

1. The goal of this problem is to give a careful proof of formula (1).
(a) Show that $S_{A B C D}=|\mathbf{v} \cdot R(\mathbf{w})|$, where R is the operation of rotating by 90° clockwise. [Hint: $S=|\mathbf{v}||\mathbf{w}| \sin (\varphi)$.
(b) Show that for a vector $\mathbf{w}=\left[\begin{array}{l}x \\ y\end{array}\right]$, we have $R(\mathbf{w})=\left[\begin{array}{c}y \\ -x\end{array}\right]$.
(c) Deduce from this formula (1).
2. Let $\mathbb{S}_{A B C}$ be the signed area of triangle $A B C$:

$$
\mathbb{S}_{A B C}= \begin{cases}S_{A B C} & \text { if vertices } A, B, C \text { go in counterclockwise order } \\ -S_{A B C} & \text { if vertices } A, B, C \text { go in clockwise order }\end{cases}
$$

Note that $\mathbb{S}_{A B C}$ depends not just on the triangle but also on the order in which we list the vertices.
Show that

$$
\mathbb{S}_{A B C}=\frac{1}{2} \overrightarrow{A B} \wedge \overrightarrow{A C}
$$

3. Find the area of the triangle with vertices at $(0,0),(5,1),(7,7)$.
4. If the area of $\triangle A B C$ is 24, what is the area of $\triangle A B M$, where M is the intersection point of the medians?
[This problem can be solved in many ways. One of them: if $\overrightarrow{A B}=\mathbf{v}, \overrightarrow{A C}=\mathbf{w}$, then what is $\overrightarrow{A M}$?]

5. Shoelace formula.

(a) Consider a triangle $A B C$ in the plane; let $\mathbb{S}_{A B C}$ be as in problem 2. Show that then for any point O in the plane, we have

$$
\mathbb{S}_{A B C}=\mathbb{S}_{O A B}+\mathbb{S}_{O B C}+\mathbb{S}_{O C A}=\mathbb{S}_{O A B}+\mathbb{S}_{O B C}-\mathbb{S}_{O A C}
$$

$O \bullet$
Note that there are many possible configurations: for example, O could be on the other side of $B C$, or it could be inside $A B C$. Do you think the above formula holds in all configurations or only in some?
(b) Consider triangle $A B C$, where $A=\left(x_{1}, y_{1}\right), B=\left(x_{2}, y_{2}\right), C=\left(x_{3}, y_{3}\right)$. Show that then,
$\mathbb{S}_{A B C}=\frac{1}{2}\left(x_{1} y_{2}+x_{2} y_{3}+x_{3} y_{1}-y_{1} x_{2}-y_{2} x_{3}-y_{3} x_{1}\right)$,
$S_{A B C}=\frac{1}{2}\left|x_{1} y_{2}+x_{2} y_{3}+x_{3} y_{1}-y_{1} x_{2}-y_{2} x_{3}-y_{3} x_{1}\right|$
[Hint: use the previous part with $O=(0,0)$.]

*(c) Can you suggest an analog of this formula for a quadrilateral? for an n-gon?
(d) Find the area of the quadrilateral with vertices at $(1,3),(1,1),(2,1)$, and $(2021,2022)$.

