MATH 10
 ASSIGNMENT 7: SYSTEMS OF LINEAR EQUATIONS

NOVEMBER 6, 2022

Systems of linear equations

A number of practical problems give a number of linear equations which have to be simultaneously solved. For example, suppose sudents A and B went to the supermarket. Student A bought a bag of cookies and two cans of soda, paying five dollars. Student B bought two bags of cookies and a can of soda and paid seven dollars. How much does each item cost?

It is easy to see that this problem can be phrased in terms of a system of linear equations. Let c denote the price of the bag of cookies and s the price of a can of soda. Then

$$
\begin{aligned}
& c+2 s=5 \\
& 2 c+s=7
\end{aligned}
$$

An intuitive method to solve this problem is that of substitution. First we solve the first equation for c :

$$
\begin{equation*}
c=5-2 s . \tag{1}
\end{equation*}
$$

Then we substitute this result in the first equation and solve for s :

$$
2(5-2 s)+s=7 \Rightarrow s=1
$$

Finally, we go backwards, substituting $s=1$ back in equation (1): $c=5-2(1)=3$.
We will now start the study of general systems of linear equations, with m equations and n variables. They will look something like this:

$$
\begin{aligned}
a_{11} x_{1}+a_{12} x_{2}+\ldots+a_{1 n} x_{n} & =b_{1} \\
a_{21} x_{1}+a_{22} x_{2}+\ldots+a_{2 n} x_{n} & =b_{2} \\
\vdots & \\
a_{m 1} x_{1}+a_{m 2} x_{2}+\ldots+a_{m n} x_{n} & =b_{m}
\end{aligned}
$$

To such a system of equations we associate the matrix of coefficients

$$
A=\left[\begin{array}{cccc}
a_{11} & a_{12} & \ldots & a_{1 n} \\
a_{21} & a_{22} & \ldots & a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{m 1} & a_{m 2} & \ldots & a_{m n}
\end{array}\right]
$$

and the vector of constants

$$
\mathbf{b}=\left[\begin{array}{c}
b_{1} \\
b_{2} \\
\vdots \\
b_{m}
\end{array}\right] .
$$

We can combine these two into the augmented matrix,

$$
A \left\lvert\, \mathbf{b}=\left[\begin{array}{cccc|c}
a_{11} & a_{12} & \ldots & a_{1 n} & b_{1} \\
a_{21} & a_{22} & \ldots & a_{2 n} & b_{2} \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
a_{m 1} & a_{m 2} & \ldots & a_{m n} & b_{m}
\end{array}\right]\right.,
$$

For example, if the systems of linear equations is

$$
\begin{aligned}
& 2 x_{1}+x_{2}+3 x_{3}=2 \\
& 4 x_{1}-7 x_{2}+5 x_{3}=1
\end{aligned}
$$

then we get

$$
A=\left[\begin{array}{ccc}
2 & 1 & 3 \\
4 & -7 & 5
\end{array}\right], \quad \mathbf{b}=\left[\begin{array}{l}
2 \\
1
\end{array}\right], \quad A \left\lvert\, \mathbf{b}=\left[\begin{array}{ccc|c}
2 & 1 & 3 & 2 \\
4 & -7 & 5 & 1
\end{array}\right]\right.
$$

Elementary row operations

The main idea of the method we will use to solve an arbitrary system of linear equations is to transform it to a simpler form. The transformation should not change the set of solutions. To do this, we will use the following elementary operations:

- Exchange two equations (= two rows of the augmented matrix)
- Multiply both sides of an equation (= one row of augmented matrix) by a non-zero number
- Add to one equation a multiple of another (= add to one row of the augmented matrix a multiple of another)
Applying these operations to bring your matrix to a simpler form is called row reduction, or Gaussian elimination

Simple example

$$
\begin{aligned}
x_{1}-2 x_{2}+2 x_{3} & =5 \\
x_{1}-x_{2} & =-1 \\
-x_{1}+x_{2}+x_{3} & =5
\end{aligned}
$$

The augmented matrix is

$$
\left[\begin{array}{ccc|c}
1 & -2 & 2 & 5 \\
1 & -1 & 0 & -1 \\
-1 & 1 & 1 & 5
\end{array}\right]
$$

Using row operations, we can bring it to the form

$$
\left[\begin{array}{ccc:c}
1 & -2 & 2 & 5 \\
0 & 1 & -2 & -6 \\
0 & 0 & 1 & 4
\end{array}\right]
$$

so the solution is

$$
\begin{aligned}
& x_{3}=4 \\
& x_{2}=-6+2 x_{3}=2 \\
& x_{1}=5-2 x_{3}+2 x_{2}=1
\end{aligned}
$$

Row EChELON FORM

In general, using row operations, every system can be brought to a form where each row begins with some number of zeroes, and each next row has more zeroes than the previous one:

$$
\left[\begin{array}{ccccccc|c}
X & * & * & * & * & * & * & * \\
0 & 0 & 0 & X & * & * & * & * \\
0 & 0 & 0 & 0 & X & * & * & *
\end{array}\right]
$$

(here X 's stand for non-zero entries).
To solve such a system, we do the following:

- Variables corresponding to columns with X 's in them are called pivot variables; the remaining ones are called free variables.
- Values for free variables can be chosen arbitrarily. Values for pivot variables are then uniquely determined from the equations.

For example, in the system

$$
\begin{array}{r}
x_{1}+x_{2}+x_{3}=5 \\
x_{2}+3 x_{3}=6
\end{array}
$$

varaibles x_{1}, x_{2} are pivot, and variable x_{3} is free, so we can solve it by letting $x_{3}=t$, and then

$$
\begin{aligned}
& x_{2}=6-3 x_{3}=6-3 t \\
& x_{1}=5-x_{2}-x_{3}=-1+2 t
\end{aligned}
$$

Make sure you understand what the meaning here is: for any real number t,

$$
\mathbf{x}=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{c}
-1+2 t \\
6-3 t \\
t
\end{array}\right]
$$

is a solution.

Homework

1. Solve the following system of equations

$$
\begin{array}{r}
w+x+y+z=6 \\
w+y+z=4 \\
w+y=2
\end{array}
$$

2. Solve the system of equations with the following matrix

$$
\left[\begin{array}{ccc|c}
2 & -1 & 3 & 2 \\
1 & 4 & 0 & -1 \\
2 & 6 & -1 & 5
\end{array}\right]
$$

3. Solve the following system of equations

$$
\begin{aligned}
x_{1}+x_{2}+3 x_{3} & =3 \\
-x_{1}+x_{2}+x_{3} & =-1 \\
2 x_{1}+3 x_{2}+8 x_{3} & =4
\end{aligned}
$$

4. Consider the system of equations

$$
\begin{aligned}
3 x-y+2 z & =b_{1} \\
2 x+y+z & =b_{2} \\
x-7 y+2 z & =b_{3}
\end{aligned}
$$

(a) If $b_{1}=b_{2}=b_{3}=0$, find all solutions
(b) For which triples b_{1}, b_{2}, b_{3} does it have a solution?
5. Consider a system of 4 equations in 5 variables.
(a) Show that if the right-hand side is zero, then this system must have a non-zero solution.
(b) Is it true if the right-hand side is non-zero?
6. Find a vector of unit length perpendicular to the plane determined by the points $P(1,2,3), Q(-1,3,2)$, $R(3,-1,2)$, and find the area of the triangle $P Q R$.

