MATH 10

ASSIGNMENT 9: MATRICES

NOV 20, 2022

Review: Vector Spaces, Basis, Dimension

Recall that a real vector space is a set V together with two operations: vector addition and multiplication by real numbers, satisfying natural laws. Basic example is space \mathbb{R}^{n}.

A set of vectors $\mathbf{e}_{1}, \ldots, \mathbf{e}_{n} \in V$ is called a basis is every vector $v \in V$ can be uniquely written as linear combination of $\mathbf{e}_{1}, \ldots, \mathbf{e}_{n}$:

$$
v=x_{1} \mathbf{e}_{1}+\cdots+x_{n} \mathbf{e}_{n}, \quad x_{i} \in \mathbb{R} .
$$

Thus, once we have chosen a basis in V, we can describe any vector by a collection of numbers x_{1}, \ldots, x_{n} - coordinates of this vector in our basis. For example, in \mathbb{R}^{n} one has standard basis

$$
\mathbf{e}_{1}=\left[\begin{array}{c}
1 \\
0 \\
0 \\
\vdots \\
0
\end{array}\right], \quad \mathbf{e}_{2}=\left[\begin{array}{c}
0 \\
1 \\
0 \\
\vdots \\
0
\end{array}\right], \quad, \ldots, \mathbf{e}_{n}=\left[\begin{array}{c}
0 \\
0 \\
0 \\
\vdots \\
1
\end{array}\right],
$$

so that

$$
\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right]=x_{1} \mathbf{e}_{1}+\cdots+x_{n} \mathbf{e}_{n}
$$

Important: the same vector space can have many different bases, and coordinates of a vector depend on the choice of basis - see problem 1 below. However, it is known that all bases have the same number of basis elements; this number is called dimension of the vector space.

Linear Maps and Matrices

Recall that an $m \times n$ matrix is just a rectangular array of numbers:

$$
A=\left[\begin{array}{cccc}
a_{11} & a_{12} & \ldots & a_{1 n} \\
a_{21} & a_{22} & \ldots & a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{m 1} & a_{m 2} & \ldots & a_{m n}
\end{array}\right]
$$

We will denote set of all $m \times n$ matrices by $M a t_{m \times n}$.
We have used matrices before to describe a system of linear equations. Another, closely related use is for describing maps (functions) between vector spaces.

Given a matrix $A \in M a t_{m \times n}$ and a vector $\mathbf{x} \in \mathbb{R}^{n}$, define their product $A \mathbf{x}$ by

$$
A \mathbf{x}=\left[\begin{array}{cccc}
a_{11} & a_{12} & \ldots & a_{1 n} \\
a_{21} & a_{22} & \ldots & a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{m 1} & a_{m 2} & \ldots & a_{m n}
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right]=\left[\begin{array}{c}
a_{11} x_{1}+a_{12} x_{2}+\ldots a_{1 n} x_{n} \\
a_{21} x_{1}+a_{22} x_{2}+\ldots a_{2 n} x_{n} \\
\vdots \\
a_{m 1} x_{1}+a_{m 2} x_{2}+\ldots a_{m n} x_{n}
\end{array}\right]
$$

Note that the result is a vector with m components; thus, an $m \times n$ matrix gives a map $\mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$. It is easy to see that this map is linear:

$$
\begin{aligned}
& A(c \mathbf{x})=c \cdot A \mathbf{x}, \quad c \in \mathbb{R} \\
& A(\mathbf{x}+\mathbf{y})=A \mathbf{x}+A \mathbf{y}
\end{aligned}
$$

(in fact, any linear map $\mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is described by a matrix).

Using this notation, we can write any system of linear equations, with m equations and n variables

$$
\begin{aligned}
& a_{11} x_{1}+a_{12} x_{2}+\ldots a_{1 n} x_{n}=b_{1} \\
& \ldots \\
& a_{m 1} x_{1}+a_{m 2} x_{2}+\ldots a_{m n} x_{n}=b_{m}
\end{aligned}
$$

in a compact form:

$$
A \mathbf{x}=\mathbf{b}
$$

We can now restate one of the results from the last time as follows.
Theorem 1. Let $V \subset \mathbb{R}^{n}$ be the set of solutions of a system of linear equations $A \mathbf{x}=0$. Then V is a vector space, and its dimension is given by

$$
\operatorname{dim} V=n-r
$$

where r is the number of non-zero rows in the reduced echelon form of A.
As an immediate corollary, we see that if $m<n$ (and thus $r<n$), then such a system always has non-zero solutions.

Homework

1. Show that vectors

$$
\mathbf{e}_{1}=\left[\begin{array}{l}
1 \\
1
\end{array}\right], \quad \mathbf{e}_{2}=\left[\begin{array}{c}
1 \\
-1
\end{array}\right]
$$

form a basis in \mathbb{R}^{2} : every vector $v=\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]$ can be uniquely written in the form

$$
v=x_{1}^{\prime} \mathbf{e}_{1}+x_{2}^{\prime} \mathbf{e}_{2}
$$

Can you express $x_{1}^{\prime}, x_{2}^{\prime}$ in terms of x_{1}, x_{2} ? conversely, can you express x_{1}, x_{2} in terms of $x_{1}^{\prime}, x_{2}^{\prime}$?
2. (a) Consider the following 3 vectors in \mathbb{R}^{2} :

$$
\mathbf{e}_{1}=\left[\begin{array}{l}
1 \\
2
\end{array}\right], \quad \mathbf{e}_{2}=\left[\begin{array}{l}
0 \\
1
\end{array}\right], \quad \mathbf{e}_{3}=\left[\begin{array}{c}
3 \\
-4
\end{array}\right]
$$

Show that there is a linear relation between them: one can find real numebrs c_{1}, c_{2}, c_{3} (not all zero) such that

$$
c_{1} \mathbf{e}_{1}+c_{2} \mathbf{e}_{2}+c_{3} \mathbf{e}_{3}=0
$$

(b) Deduce from the previous part that these 3 vectors do not form a basis: vector 0 can be written as combination of $\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3}$ in more than one way.
(c) Use corollary to Theorem 1 above to show that in fact, for any 3 vectors in \mathbb{R}^{2}, there must be a linear relation between them. [Hint: $c_{1} \mathbf{e}_{1}+c_{2} \mathbf{e}_{2}+c_{3} \mathbf{e}_{3}=0$ is equivalent to a system of linear equations on c_{1}, c_{2}, c_{3}.]
*(d) Can you state and prove similar statement for \mathbb{R}^{n} ?
3. Assume that $\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3}$ is a basis in \mathbb{R}^{3} (not necessarily the standard one), with the additional property that each vector has unit length and they are all orthogonal to each other:

$$
\left|\mathbf{e}_{i}\right|=1, \quad \mathbf{e}_{i} \cdot \mathbf{e}_{j}=0 \text { for } i \neq j
$$

Since it is a basis, each vector can be written in the form $v=x_{1} \mathbf{e}_{1}+x_{2} \mathbf{e}_{2}+x_{3} \mathbf{e}_{3}$.
Prove that then one can find the coordinates x_{1}, x_{2}, x_{3} in this basis very easily:

$$
x_{i}=v \cdot \mathbf{e}_{i}
$$

4. (a) Let R be the operation of counterclockwise rotation by 90 degrees in the plane \mathbb{R}^{2}. Show that it can be described by a matrix:

$$
R\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=A\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]
$$

for some 2×2 matrix A.
(b) Can you do the same, but for the operation R_{θ} of rotation by angle θ ? [Hint: let $\mathbf{e}_{1}, \mathbf{e}_{2}$ be the standard basis in \mathbb{R}^{2}. Can you find $R_{\theta} \mathbf{e}_{1}, R_{\theta} \mathbf{e}_{2}$? Once you do that, finding $R_{\theta}\left(x_{1} \mathbf{e}_{1}+x_{2} \mathbf{e}_{2}\right)$ should be easy]
(c) Can you do the same for the operation of rotation by angle θ around x-axis in \mathbb{R}^{3} ?
5. Solve the system of linear equations

$$
\begin{aligned}
y-3 z & =-1 \\
x-y+2 z & =3 \\
2 x-y+4 z & =8
\end{aligned}
$$

