MATH 10 ASSIGNMENT 9: MATRICES NOV 20, 2022

REVIEW: VECTOR SPACES, BASIS, DIMENSION

Recall that a *real vector space* is a set V together with two operations: vector addition and multiplication by real numbers, satisfying natural laws. Basic example is space \mathbb{R}^n .

A set of vectors $\mathbf{e}_1, \ldots, \mathbf{e}_n \in V$ is called a *basis* is every vector $v \in V$ can be uniquely written as linear combination of $\mathbf{e}_1, \ldots, \mathbf{e}_n$:

 $v = x_1 \mathbf{e}_1 + \dots + x_n \mathbf{e}_n, \qquad x_i \in \mathbb{R}.$

Thus, once we have chosen a basis in V, we can describe any vector by a collection of numbers x_1, \ldots, x_n — coordinates of this vector in our basis. For example, in \mathbb{R}^n one has standard basis

$$\mathbf{e}_1 = \begin{bmatrix} 1\\0\\0\\\vdots\\0 \end{bmatrix}, \qquad \mathbf{e}_2 = \begin{bmatrix} 0\\1\\0\\\vdots\\0 \end{bmatrix}, \qquad ,\dots, \mathbf{e}_n = \begin{bmatrix} 0\\0\\0\\\vdots\\1 \end{bmatrix},$$

so that

$$\begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = x_1 \mathbf{e}_1 + \dots + x_n \mathbf{e}_n$$

Important: the same vector space can have many different bases, and coordinates of a vector depend on the choice of basis — see problem 1 below. However, it is known that all bases have the same number of basis elements; this number is called *dimension* of the vector space.

LINEAR MAPS AND MATRICES

Recall that an $m \times n$ matrix is just a rectangular array of numbers:

$$A = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix}$$

We will denote set of all $m \times n$ matrices by $Mat_{m \times n}$.

We have used matrices before to describe a system of linear equations. Another, closely related use is for describing maps (functions) between vector spaces.

Given a matrix $A \in Mat_{m \times n}$ and a vector $\mathbf{x} \in \mathbb{R}^n$, define their product $A\mathbf{x}$ by

$$A\mathbf{x} = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n \\ \vdots \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n \end{bmatrix}$$

Note that the result is a vector with m components; thus, an $m \times n$ matrix gives a map $\mathbb{R}^n \to \mathbb{R}^m$. It is easy to see that this map is linear:

$$\begin{aligned} A(c\mathbf{x}) &= c \cdot A\mathbf{x}, \qquad c \in \mathbb{R} \\ A(\mathbf{x} + \mathbf{y}) &= A\mathbf{x} + A\mathbf{y} \end{aligned}$$

(in fact, any linear map $\mathbb{R}^n \to \mathbb{R}^m$ is described by a matrix).

Using this notation, we can write any system of linear equations, with m equations and n variables

$$a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1$$
$$\dots$$
$$a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m$$

in a compact form:

 $A\mathbf{x} = \mathbf{b}.$

We can now restate one of the results from the last time as follows.

Theorem 1. Let $V \subset \mathbb{R}^n$ be the set of solutions of a system of linear equations $A\mathbf{x} = 0$. Then V is a vector space, and its dimension is given by

$$\dim V = n - r$$

where r is the number of non-zero rows in the reduced echelon form of A.

As an immediate corollary, we see that if m < n (and thus r < n), then such a system always has non-zero solutions.

Homework

1. Show that vectors

$$\mathbf{e}_1 = \begin{bmatrix} 1\\1 \end{bmatrix}, \qquad \mathbf{e}_2 = \begin{bmatrix} 1\\-1 \end{bmatrix}$$
form a basis in \mathbb{R}^2 : every vector $v = \begin{bmatrix} x_1\\x_2 \end{bmatrix}$ can be uniquely written in the form
 $v = x'_1 \mathbf{e}_1 + x'_2 \mathbf{e}_2$

Can you express x'_1, x'_2 in terms of x_1, x_2 ? conversely, can you express x_1, x_2 in terms of x'_1, x'_2 ?

2. (a) Consider the following 3 vectors in \mathbb{R}^2 :

$$\mathbf{e}_1 = \begin{bmatrix} 1\\ 2 \end{bmatrix}, \quad \mathbf{e}_2 = \begin{bmatrix} 0\\ 1 \end{bmatrix}, \quad \mathbf{e}_3 = \begin{bmatrix} 3\\ -4 \end{bmatrix}.$$

Show that there is a linear relation between them: one can find real numebrs c_1, c_2, c_3 (not all zero) such that

$$c_1 \mathbf{e}_1 + c_2 \mathbf{e}_2 + c_3 \mathbf{e}_3 = 0.$$

- (b) Deduce from the previous part that these 3 vectors do not form a basis: vector 0 can be written as combination of $\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3$ in more than one way.
- (c) Use corollary to Theorem 1 above to show that in fact, for any 3 vectors in \mathbb{R}^2 , there must be a linear relation between them. [Hint: $c_1\mathbf{e}_1 + c_2\mathbf{e}_2 + c_3\mathbf{e}_3 = 0$ is equivalent to a system of linear equations on c_1, c_2, c_3 .]
- *(d) Can you state and prove similar statement for \mathbb{R}^n ?
- **3.** Assume that $\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3$ is a basis in \mathbb{R}^3 (not necessarily the standard one), with the additional property that each vector has unit length and they are all orthogonal to each other:

$$|\mathbf{e}_i| = 1, \quad \mathbf{e}_i \cdot \mathbf{e}_j = 0 \text{ for } i \neq j$$

Since it is a basis, each vector can be written in the form $v = x_1\mathbf{e}_1 + x_2\mathbf{e}_2 + x_3\mathbf{e}_3$. Prove that then one can find the coordinates x_1, x_2, x_3 in this basis very easily:

$$x_i = v \cdot \mathbf{e}_i$$

4. (a) Let R be the operation of counterclockwise rotation by 90 degrees in the plane \mathbb{R}^2 . Show that it can be described by a matrix:

$$R\begin{bmatrix} x_1\\ x_2 \end{bmatrix} = A\begin{bmatrix} x_1\\ x_2 \end{bmatrix}$$

for some 2×2 matrix A.

- (b) Can you do the same, but for the operation R_{θ} of rotation by angle θ ? [Hint: let $\mathbf{e}_1, \mathbf{e}_2$ be the standard basis in \mathbb{R}^2 . Can you find $R_{\theta}\mathbf{e}_1$, $R_{\theta}\mathbf{e}_2$? Once you do that, finding $R_{\theta}(x_1\mathbf{e}_1 + x_2\mathbf{e}_2)$ should be easy]
- (c) Can you do the same for the operation of rotation by angle θ around x-axis in \mathbb{R}^3 ?
- 5. Solve the system of linear equations

$$y - 3z = -1$$
$$x - y + 2z = 3$$
$$2x - y + 4z = 8$$