MATH 10

ASSIGNMENT 12: LIMITS CONTINUED

JAN 8, 2022

Today we will be discussing limits of sequences of real numbers (but many of the results coudl be generalzied to sequences of points in a plane, or in fact to sequences in any metric space).

Recall the definition of limit:
Definition. A number a is called the limit of sequence a_{n} (notation: $a=\lim a_{n}$) if for any $\varepsilon>0$, all terms of the sequence starting with some index N will be in the ε-neigborhood of a : : for any $n \geq N,\left|a_{n}-a\right|<\varepsilon$.

However, when woirking with sequences of real numbers, usually one computes limits not by using this definition but rather using the following limit laws:

Theorem 1. Let sequences a_{n}, b_{n} be such that $\lim a_{n}=A, \lim b_{n}=B$. Then:

1. $\lim \left(a_{n}+b_{n}\right)=A+B$
2. $\lim \left(a_{n} b_{n}\right)=A B$
3. $\lim \left(a_{n} / b_{n}\right)=A / B$ (only holds if $\left.B \neq 0\right)$.

In addition, there is also the following result:
Theorem 2. If $a_{n} \geq 0, \lim a_{n}=0$, and $\left|b_{n}\right| \leq a_{n}$, then $\lim b_{n}=0$.
The following limits are useful:

- If a_{n} is a constant sequence: $a_{n}=c$ for all n, then $\lim a_{n}=c$
- $\lim \frac{1}{n}=0$
- If $|r|<1$, then $\lim r^{n}=0$

Sometimes in order to use these rules, some tricks are necessary. For example, one can not compute the limit $\lim \frac{n+2}{2 n+3}$ direclty, as $\lim (n+2)$ does not exist. However, a simple trick allows one to use the quotient rule:

$$
\lim \frac{n+2}{2 n+3}=\lim \frac{1+\frac{2}{n}}{2+\frac{3}{n}}=\frac{1+0}{2+0}=\frac{1}{2}
$$

Using these rules, we had computed the following important limit

$$
\begin{equation*}
1+r+r^{2}+\cdots=\lim \left(1+r+\cdots+r^{n}\right)=\lim \frac{1-r^{n}}{1-r}=\frac{1}{1-r}, \quad|r|<1 \tag{1}
\end{equation*}
$$

1. Compute the following limits.
(a) $\lim \frac{2 n^{2}+n+1}{n^{2}+3}$
(b) $\lim \frac{n^{2}+15 n}{n^{3}}$
(c) $\lim \frac{2^{n}+1}{3^{n}}$
*(d) $\lim \frac{n}{2^{n}}$ [Show first that for $n \geq 3$, one has $a_{n+1} / a_{n} \leq 2 / 3$. Deduce then that $a_{n} \leq C(2 / 3)^{n}$ for some constant C.]
2. Prove that a sequence that has a limit must be bounded, i.e. there exists a number M such that for all indices n, we have $\left|a_{n}\right|<M$. [Hint: if $\lim a_{n}=A$, then starting from some moment, all terms of the sequence are $\leq A+1$.]
*3. Prove Theorem 2.
3. Prove that if $\left|b_{n}\right| \leq 2$, and $\lim a_{n}=0$, then $\lim a_{n} b_{n}=0$. Note that we do not assume that limit $\lim b_{n}$ exists.
4. Consider the sequence defined by

$$
\begin{equation*}
a_{1}=1, \quad a_{n+1}=\frac{1}{2}\left(a_{n}+\frac{2}{a_{n}}\right) \tag{2}
\end{equation*}
$$

(a) Use a calculator or a computer to compute the first 5 terms. Does it indeed look like the sequence is convergent? [You are not required to give a rigorous proof that it is convergent.]
(b) Assuming that it does converge, can you guess what the value of the limit is? [Hint: if this sequence is convergent, then the limit A satisfies $A=\frac{1}{2}\left(A+\frac{2}{A}\right)$.]
(c) Can you modify (2) to get a sequence that computes $\sqrt{3}$?
6. Consider the sequence given by $x_{1}=1, x_{n+1}=\frac{1}{1+x}$.
(a) Compute first 3 terms of this sequence.
(b) Prove that if the limit exists, it satisfies $X=\frac{1}{1+X}$.
(c) Assuming that the limit exists, find it.
7. Consider the infinite decimal

$$
x=0.17171717 \ldots
$$

(a) Show that this decimal can be written as a sum of an infinite gomeotric progression.
(b) Show that x is a rational number.
(c) Is it true that any periodic infinite decimal is rational? Is the converse true?
8. Recall that a limit must be an accumulation point of a sequence (HW 4, problem 5).
(a) Show that converse is not necessarily true: an accumulation point does not have to be a lmit.
(b) Show that if a sequence has two different accumulation points C, C^{\prime}, then it can not have a limit.
9. (a) Let S be a closed set and a_{n} a sequence such that $a_{n} \in S$ for any n. Prove that if the limit $\lim a_{n}$ exists, it must be also in S. [Hint: otherwise, the limit is in the complement S^{\prime}, and the complement is open...]
(b) Let $a_{n} \geq 0$ for all n. Prove that then $\lim a_{n} \geq 0$ (assuming it exists).
(c) Let $a_{n}>0$ for all n. Is it true that then $\lim a_{n}>0$ (assuming it exists)?

