MATH 5: HANDOUT 7 FRACTIONS AND DECIMALS. MORE WORD PROBLEMS

Puzzles

- 1. Divide a number by one more than itself. The result is 1/5. Divide a second number by one more than itself. The result is 1/5th the number. Multiply these two numbers - what is the product?
- 2. If each bat eats eight hundred bugs per hour for five hours per night, how many bugs would a colony of fifty bats eat in a week?

0.2857142

TODAY'S MATERIAL

Sets. Sets are collections of similar elements. In mathematics, we usually talk about sets of numbers. The main sets are:

repeats itself.

• \mathbb{N} : Set of natural numbers, i.e. $1, 2, 3, \ldots$;	$7 \mid 2.0000000$
Operations: $+, \times$.	1.4
• \mathbb{Z} : Set of integer numbers, i.e, $-3, -2, -1, 0, 1, 2, 3,;$	60
Operations: $+, -, \times$.	56
• \mathbb{O} : Set of rational numbers, i.e. numbers that can be written as a	40
fraction	35
Operations: $+, -, \times, \div$	50
	49
Fractions and Decimals. We also talked about how to convert fractions to	$\overline{10}$
decimals (see the long division on the right, where we attempt to convert	7
$\frac{2}{7}$ into a decimal. We keep doing long division until the remainder repeats.	30
Every fraction can be converted to a decimal which will either be finite, or	28
it will be infinite, but there will be a sequence of numbers which constantly	$\frac{-3}{20}$

 $\frac{2}{7} = 0.285714285714\dots = 0.\overline{285714}.$

We also introduced the *reciprocal*. For a number a, a reciprocal r(a) is such a number that $a \times r(a) = 1$. For example, $r(\frac{3}{8}) = \frac{8}{3}$, because $\frac{3}{8} \times \frac{8}{3} = 1$.