MATH 5: HANDOUT 13

MORE POWERS. SCIENTIFIC NOTATION.

More Powers

Recall that for a positive integer n, we have defined

$$
a^{n}=\underbrace{a \cdot a \cdots a}_{n \text { times }}
$$

then

$$
a^{m} a^{n}=a^{m+n}, \quad a^{m} \div a^{n}=a^{m-n}
$$

It turns out that there is only one way to define a^{n} for $n=0$ and negative n so that these rules still work:

$$
a^{0}=1 \quad a^{-n}=\frac{1}{a^{n}}
$$

For example, $3^{-2}=\frac{1}{3^{2}}=\frac{1}{9}$
Another important formula is the following:

$$
\left(a^{n}\right)^{m}=a^{n \times m}
$$

It is easy to see why this formula holds:

$$
\left(a^{n}\right)^{m}=\underbrace{(\underbrace{a \cdot a \cdots \cdot \cdots a}_{n \text { times }}) \times \cdots \times(\underbrace{a \cdot a \cdots a b}_{n \text { times }}}_{m \text { times }})=a^{n \times m}
$$

Scientific notation

Scientific notation is a convenient way to write very large numbers: instead of writing $2,000,000,000$ one can say " 2 and then 9 zeros". Since writing a zero at the end is the same as multiplication by 10 , we can also write the same number as

$$
2 \times 10 \times \cdots \times 10 \quad(9 \text { times })
$$

or, for short 2×10^{9}. Thus, we can write

$$
2,000,000,000=2 \times 10^{9}
$$

which is much shorter.
Similarly, we can write

$$
\begin{aligned}
2,310,000,000 & =231 \times 10 \times \cdots \times 10 \quad \text { (} 7 \text { times) } \\
& =2.31 \times 10 \times \cdots \times 10 \quad \text { (} 9 \text { times) } \\
& =2.31 \times 10^{9}
\end{aligned}
$$

Such a form (a decimal with one digit before decimal point times 10 to some power) is called the scientific notation.

To write a number larger than 10 in scientific notation, you should:

1. Count how many digits the whole part has. The power of 10 will be number of digits minus 1 .
2. Write down the digits of the number, but now put the decimal point after the first digit.

Example:

$$
3412000=3.412000 \times 10^{6}=3.412 \times 10^{6}
$$

In a similar way, scientific notation is very useful for very small numbers. For example, weight of one atom of hydrogen is about 1.66×10^{-24} gram - or

CLASSWORK

1. Simplify:
(a) $\left(2 z^{2} \cdot 3 z^{3} \cdot z\right)^{2}$
(c) $2 x^{2} \cdot x^{3}-x^{7} \div x^{2}$
(b) $\left(\frac{5 g^{4} b^{5}}{4 g^{2} b^{3}}\right)^{3}$
(d) $\frac{(-a b)^{8}}{(a b)^{2}}$
(e) $\frac{18^{n+3}}{3^{2 n+5} \cdot 2^{n-2}}$
(f) $\left(\frac{3 a b^{3}}{15 b}\right)^{2} \cdot \frac{75 c}{a^{2} b^{6}}$
2. Let $x=a^{3} \cdot b^{2}, y=\frac{b^{5}}{a^{2} c^{4}}$, and $z=\frac{c^{3}}{a b}$. Express in terms of a, b, c :
(a) $x y z$
(b) $x^{2} y^{3} z^{4}$
(c) $\frac{x y}{z}$
