MATH 5: HANDOUT 15

DIFFERENCE OF SQUARES. SQUARE ROOT. PYTHAGOREAN THEOREM.

Difference of Squares

There is an important formula that allows you to factor a difference of squares:

$$
a^{2}-b^{2}=(a-b)(a+b)
$$

SQUARE Roots
Square root of a is a number whose square is equal to a. For example: square root of 25 is 5 , because $5^{2}=25$.

- Notation: square root of number a is commonly denoted \sqrt{a}.
- $\sqrt{a b}=\sqrt{a} \sqrt{b}$, but $\sqrt{a+b}$ is not equal to $\sqrt{a}+\sqrt{b}$.

Pythagorean theorem: In a right triangle with legs a, b and hypotenuse c, one has

$$
a^{2}+b^{2}=c^{2} \quad \text { ot } \quad c=\sqrt{a^{2}+b^{2}} .
$$

Proof: Consider the following picture:

In this square, the total area is

$$
(a+b) \times(a+b)=a \times(a+b)+b \times(a+b)=a^{2}+a b+a b+b^{2}=a^{2}+2 a b+b^{2}
$$

On the other hand, the area of each triangle is $\frac{1}{2} a b$, and the area of shaded square is c^{2}. Thus, we get

$$
a^{2}+2 a b+b^{2}=4 \times \frac{1}{2} a b+c^{2}
$$

which gives $a^{2}+b^{2}=c^{2}$.
For example, in a square with side 1 , the diagonal has length $\sqrt{2}$.
It is possible - but not easy - to find a right triangle where all sides are whole numbers. The easiest such triangle is the triangle with sides $3,4,5$.

$$
\text { Power } \frac{1}{2}
$$

We know how to raise numbers into whole powers:

$$
a^{n}=a \times \cdots \times a .
$$

But what is $a^{\frac{1}{2}}$?
Example: Let's try to figure out what $4^{\frac{1}{2}}$ is:

$$
4^{\frac{1}{2}} \times 4^{\frac{1}{2}}=4^{\frac{1}{2}+\frac{1}{2}}=4^{1}=4
$$

We can see that $4^{\frac{1}{2}}$ must be a number, such that if we multiply it by itself, we get 4 . But this is just a square root of 4 ! So, we get:

$$
4^{\frac{1}{2}}=\sqrt{4}
$$

In general, this is also true:

$$
a^{\frac{1}{2}}=\sqrt{a}
$$

