Classwork 8.

Problems with proportions:

Problem 1. To prepare 6 large pizzas, the cook needs 2.5 kg of flour. How much flour does the cook need to prepare 8 pizzas? We can write the problem as follows:

6 pizzas \rightarrow 2.5 kg

8 pizzas $\rightarrow x$ kg

We can create several proportions:

1. How many kilograms of flour are needed to make one pizza:

$$\frac{2.5 \ kg.}{6} = \frac{x \ kg.}{8}$$

2. Flour consumption is proportional to the number of pizzas made, so if twice as many pizzas are made, twice as much flour should be used.

$$\frac{6}{8} = \frac{2.5 \ kg.}{x \ kg.}$$

3. How many pizzas can be made with 1 kg of flour?

$$\frac{6}{2.5 \ kg} = \frac{8}{x \ kg.}$$

For the first proportion:

 $\frac{2.5 \ kg.}{6} = \frac{x \ kg.}{8}; \quad 8 \cdot 2.5 \ kg = 6 \cdot x \ kg.; \qquad x = \frac{8 \cdot 2.5 \ kg.}{6} = \frac{4 \cdot 2.5 \ kg}{3} = \frac{10}{3} = 3\frac{1}{3} \ kg.$ For the second and third:

$$\frac{6}{8} = \frac{2.5 \ kg.}{x \ kg.}; \quad 6 \cdot x \ kg = 8 \cdot 2.5 \ kg; \quad x = \frac{8 \cdot 2.5 \ kg.}{6} = \frac{4 \cdot 2.5 \ kg}{3} = \frac{10}{3} = 3\frac{1}{3} \ kg$$

$$\frac{6}{2.5 \ kg} = \frac{8}{x \ kg.}; \ 6 \cdot x \ kg = 8 \cdot 2.5 \ kg; \ x = \frac{8 \cdot 2.5 \ kg.}{6} = \frac{4 \cdot 2.5 \ kg}{3} = \frac{10}{3} = 3\frac{1}{3} \ kg$$

6 pizzas
$$\rightarrow$$
 2.5 kg
8 pizzas $\rightarrow x$ kg

Problem 2. 6 typists working 5 hours a day can type the manuscript of a book in 16 days. How many days will 4 typists take to do the same job, each working 6 hours a day?

6 typists \cdot 5 hours \rightarrow 16 days 4 typists \cdot 6 hours \rightarrow x days

When writing a proportion, we must be careful to choose the right one: more typists, more hours a day, less time to get the job done.

$$\frac{6 \cdot 5}{4 \cdot 6} \neq \frac{16}{x}; \quad \frac{6 \cdot 5}{4 \cdot 6} = \frac{x}{16};$$

 $\frac{5}{4} = \frac{x}{16}; \qquad 4x = 16 \cdot 5; \qquad x = \frac{16 \cdot 5}{4} = 20 \text{ days.}$

This problem can be solved without writing the proportion. Number of hours of typing for one typist needed to do the job is $16 \ days \cdot 6 \ typists \cdot 5 \ hour \ per \ day$ should be equal to $x \ days \cdot 4 \ typists \cdot 6 \ hour \ per \ day$

$$16 \cdot 6 \cdot 5 = x \cdot 4 \cdot 6; \quad x = \frac{16 \cdot 6 \cdot 5}{4 \cdot 6} = 20 \ days$$

Algebraic expression.

Expressions where variables, and/or numbers are added, subtracted, multiplied, and divided. For example:

2*a*;
$$3b + 2$$
; $3c^2 - 4xy^2$

We can do a lot with algebraic expressions, even so we don't know exact values of variables. First, we always can combine like terms:

2x + 2y - 5 + 2x + 5y + 6 = 2x + 2x + 5y + 2y + 6 - 5 = 4x + 7y + 1We can multiply an algebraic expression by a number or a variable:

$$3 \cdot (1+3y) = 3 \cdot 1 + 3 \cdot 3y = 3 + 9y$$

In this example the distributive property was used. Using the definition of multiplication we can write:

$$3 \cdot (1+3y) = (1+3y) + (1+3y) + (1+3y) = 3+3 \cdot y = 3+9y$$

sample:

Another example:

$$5a(5-5x) = \underbrace{(5-5x) + (5-5x) + \dots + (5-5x)}_{5a \ times} = \underbrace{5+5+\dots+5}_{5a \ times} - \underbrace{5x-5x-\dots-5x}_{5a \ times}$$
$$= \underbrace{5+5+\dots+5}_{5a \ times} - \underbrace{5x-5x-\dots-5x}_{5a \ times} = 5a \cdot 5 - 5a \cdot 5x = 25a - 25ax}_{5a \ times}$$

Exercises:

- 1. The sorcerer used seaweed and mushrooms in a ratio of 5 to 2 when brewing a potion. How much seaweed does he need if there are only 450 grams of mushrooms?
- 2. A car travels from one city to another in 13 hours at a speed of 75 km/h. How long will it take if the car moves at a speed of 52 km/h?
- 3. Simplify the following expression (combine like terms, think about which terms you can add together and which you can't):

$$\left(\frac{1}{7}klm^{2} - \frac{4}{3}kl^{2}m + 7klm\right) + \left(-\frac{3}{21}klm^{2} + \frac{4}{9}kl^{2}m - 5klm\right)$$

4. Factor out the common factor;

a. $a^2 + ab;$ b. $x^2 - x;$ c. $a + a^2;$ d. $2xy - x^3;$ e. $b^3 - b^2$ e. $a^4 + a^3b;$ f. $x^2y^2 - y^4;$ g. $4a^6 - 2a^3b;$ h. $9x^4 - 12x^2y^4;$

1. Simplify the following expressions (combine like terms):

а.	7a + (2a + 3b);	<i>b</i> .	9x + (2y - 5x);
С.	(5x + 7a) + 4x;	<i>d</i> .	(5x - 7a) + 5a;
е.	(3x-6y)-4y;	f.	(2a + 5b) - 7b;
<i>g</i> .	3m - (5n + 2m);	h.	6p - (5p - 3a);

2.

a. $(x^{2} + 4x) + (x^{2} - x + 1) - (x^{2} - x);$ b. $(a^{5} + 5a^{2} + 3a - a) - (a^{3} - 3a^{2} + a);$ c. $(x^{2} - 3x + 2) - (-2x - 3);$ d. (abc + 1) + (-1 - abc);

3. Factorize the following expressions:

а.	x(1+b) + y(1+b);	f. $(a+b)a - b(a+b);$;
b.	m(2k-3) + 2(2k-3);	g. $(x+y)3 - a(x+y)$;
С.	2a(1-b) - 3(1-b);	h. $a(b+3) - b(3+b)$;
d.	7x(x-2y) - 2(2y+x);	<i>i</i> . $a(a+b) + (a+b)$;	
е.	2x(x-2y) + 3y(x+2y);	j. $2x(a-1) - (a-1);$;

