Classwork 8.

Problems with proportions:

Problem 1. To prepare 6 large pizzas, the cook needs 2.5 kg of flour. How much flour does the cook need to prepare 8 pizzas? We can write the problem as follows:
6 pizzas $\rightarrow 2.5 \mathrm{~kg}$
8 pizzas $\rightarrow x \mathrm{~kg}$
We can create several proportions:

1. How many kilograms of flour are needed to make one pizza:

$$
\frac{2.5 \mathrm{~kg} .}{6}=\frac{x \mathrm{~kg} .}{8}
$$

2. Flour consumption is proportional to the number of pizzas made, so if twice as many pizzas are made, twice as much flour should be used.

$$
\frac{6}{8}=\frac{2.5 \mathrm{~kg}}{x \mathrm{~kg} .}
$$

3. How many pizzas can be made with 1 kg of flour?

$$
\frac{6}{2.5 \mathrm{~kg}}=\frac{8}{x \mathrm{~kg} .}
$$

For the first proportion:
$\frac{2.5 \mathrm{~kg} .}{6}=\frac{x \mathrm{~kg} .}{8} ; \quad 8 \cdot 2.5 \mathrm{~kg}=6 \cdot x \mathrm{~kg} . ; \quad x=\frac{8 \cdot 2.5 \mathrm{~kg} .}{6}=\frac{4 \cdot 2.5 \mathrm{~kg}}{3}=\frac{10}{3}=3 \frac{1}{3} \mathrm{~kg}$.
For the second and third:
$\frac{6}{8}=\frac{2.5 \mathrm{~kg} .}{x \mathrm{~kg} .} ; \quad 6 \cdot x \mathrm{~kg}=8 \cdot 2.5 \mathrm{~kg} ; \quad x=\frac{8 \cdot 2.5 \mathrm{~kg} \cdot}{6}=\frac{4 \cdot 2.5 \mathrm{~kg}}{3}=\frac{10}{3}=3 \frac{1}{3} \mathrm{~kg}$
$\frac{6}{2.5 \mathrm{~kg}}=\frac{8}{x \mathrm{~kg} .} ; 6 \cdot x \mathrm{~kg}=8 \cdot 2.5 \mathrm{~kg} ; \quad x=\frac{8 \cdot 2.5 \mathrm{~kg} \cdot}{6}=\frac{4 \cdot 2.5 \mathrm{~kg}}{3}=\frac{10}{3}=3 \frac{1}{3} \mathrm{~kg}$

$$
\begin{aligned}
& 6 \text { pizzas } \rightarrow 2.5 \mathrm{~kg} \\
& 8 \text { pizzas } \rightarrow x \mathrm{~kg}
\end{aligned}
$$

Problem 2. 6 typists working 5 hours a day can type the manuscript of a book in 16 days. How many days will 4 typists take to do the same job, each working 6 hours a day?

$$
\begin{aligned}
& 6 \text { typists } \cdot 5 \text { hours } \rightarrow 16 \text { days } \\
& 4 \text { typists } \cdot 6 \text { hours } \rightarrow x \text { days }
\end{aligned}
$$

When writing a proportion, we must be careful to choose the right one: more typists, more hours a day, less time to get the job done.

$$
\begin{aligned}
& \frac{6 \cdot 5}{4 \cdot 6} \neq \frac{16}{x} ; \quad \frac{6 \cdot 5}{4 \cdot 6}=\frac{x}{16} \\
& \frac{5}{4}=\frac{x}{16} ; \quad 4 x=16 \cdot 5 ; \quad x=\frac{16 \cdot 5}{4}=20 \text { days. }
\end{aligned}
$$

This problem can be solved without writing the proportion. Number of hours of typing for one typist needed to do the job is 16 days $\cdot 6$ typists $\cdot 5$ hour per day should be equal to x days . 4 typists $\cdot 6$ hour per day

$$
16 \cdot 6 \cdot 5=x \cdot 4 \cdot 6 ; \quad x=\frac{16 \cdot 6 \cdot 5}{4 \cdot 6}=20 \text { days }
$$

Algebraic expression.

Expressions where variables, and/or numbers are added, subtracted, multiplied, and divided. For example:

$$
2 a ; \quad 3 b+2 ; \quad 3 c^{2}-4 x y^{2}
$$

We can do a lot with algebraic expressions, even so we don't know exact values of variables. First, we always can combine like terms:

$$
2 x+2 y-5+2 x+5 y+6=2 x+2 x+5 y+2 y+6-5=4 x+7 y+1
$$

We can multiply an algebraic expression by a number or a variable:

$$
3 \cdot(1+3 y)=3 \cdot 1+3 \cdot 3 y=3+9 y
$$

In this example the distributive property was used. Using the definition of multiplication we can write:

$$
3 \cdot(1+3 y)=(1+3 y)+(1+3 y)+(1+3 y)=3+3 \cdot y=3+9 y
$$

Another example:

$$
\begin{aligned}
5 a(5-5 x) & =\underbrace{(5-5 x)+(5-5 x)+\cdots+(5-5 x)}_{5 a \text { times }}=\underbrace{5+5+\cdots+5}_{5 a \text { times }}-\underbrace{5 x-5 x-\cdots-5 x}_{5 a \text { times }} \\
& =\underbrace{5+5+\cdots+5}_{5 a \text { times }}-\underbrace{5 x-5 x-\cdots-5 x}_{5 a \text { times }}=5 a \cdot 5-5 a \cdot 5 x=25 a-25 a x
\end{aligned}
$$

Exercises:

1. The sorcerer used seaweed and mushrooms in a ratio of 5 to 2 when brewing a potion. How much seaweed does he need if there are only 450 grams of mushrooms?
2. A car travels from one city to another in 13 hours at a speed of $75 \mathrm{~km} / \mathrm{h}$. How long will it take if the car moves at a speed of $52 \mathrm{~km} / \mathrm{h}$?
3. Simplify the following expression (combine like terms, think about which terms you can add together and which you can't):

$$
\left(\frac{1}{7} k l m^{2}-\frac{4}{3} k l^{2} m+7 k l m\right)+\left(-\frac{3}{21} k l m^{2}+\frac{4}{9} k l^{2} m-5 k l m\right)
$$

4. Factor out the common factor;
a. $a^{2}+a b ;$
b. $x^{2}-x$;
c. $a+a^{2}$;
d. $2 x y-x^{3}$;
e. $b^{3}-b^{2}$
e. $\quad a^{4}+a^{3} b ;$
f. $x^{2} y^{2}-y^{4}$;
g. $4 a^{6}-2 a^{3} b$;
h. $9 x^{4}-12 x^{2} y^{4}$;
5. Simplify the following expressions (combine like terms):
a. $7 a+(2 a+3 b)$;
b. $9 x+(2 y-5 x)$;
c. $(5 x+7 a)+4 x$;
d. $(5 x-7 a)+5 a$;
e. $(3 x-6 y)-4 y$;
f. $(2 a+5 b)-7 b$;
g. $3 m-(5 n+2 m)$;
h. $6 p-(5 p-3 a)$;
6.

a. $\left(x^{2}+4 x\right)+\left(x^{2}-x+1\right)-\left(x^{2}-x\right)$;
b. $\left(a^{5}+5 a^{2}+3 a-a\right)-\left(a^{3}-3 a^{2}+a\right)$;
c. $\left(x^{2}-3 x+2\right)-(-2 x-3)$;
d. $(a b c+1)+(-1-a b c)$;
3. Factorize the following expressions:
a. $x(1+b)+y(1+b)$;
b. $m(2 k-3)+2(2 k-3)$;
c. $2 a(1-b)-3(1-b)$;
d. $7 x(x-2 y)-2(2 y+x)$;
e. $2 x(x-2 y)+3 y(x+2 y)$;
f. $(a+b) a-b(a+b)$;
g. $(x+y) 3-a(x+y)$;
h. $a(b+3)-b(3+b)$;
i. $\quad a(a+b)+(a+b)$;
j. $2 x(a-1)-(a-1)$;

Fields:

