Geometric Sequences

A sequence of numbers is a geometric sequence or geometric progression if if the next number in the sequence is the current number times a fixed constant called the common ratio or q.
Example: The sequence $6,12,24,48, \ldots$ is a geometric sequence because the next number is obtained from the previous by multiplication by $q=2$.

We can also find the n-th term if we know the 1 st term and q.
Example: What is a_{10} in the example above?

$$
\begin{aligned}
& a_{1}=6 \\
& a_{2}=a_{1} q=6 \cdot 2=12 \\
& a_{3}=a_{2} q=\left(a_{1} q\right) q=a_{1} q^{2}=6 \cdot 2^{2}=24
\end{aligned}
$$

The pattern is:

$$
\begin{aligned}
a_{n} & =a_{1} q^{n-1} \\
a_{10} & =a_{1} q^{9}=6 \cdot 2^{9}=6 \cdot 512=3072
\end{aligned}
$$

Properties of a Geometric Sequence. Any term is the geometric mean of its neighbors:

$$
a_{n}=\sqrt{a_{n-1} \cdot a_{n+1}}
$$

Proof:

$$
\begin{aligned}
& a_{n}=a_{n-1} q \\
& a_{n}=a_{n+1} / q
\end{aligned}
$$

Multipluying these two equalities gives us:

$$
a_{n}^{2}=a_{n-1} \cdot a_{n+1}
$$

from where we can get what we need.

Problems

1. Write out the first four terms of each of the following geometric sequences, given the first term b_{1} and common ration q.
(a) $b_{1}=1$ and $q=3$
(b) $b_{1}=1$ and $q=\frac{1}{2}$
(c) $b_{1}=-10$ and $q=\frac{1}{2}$
(d) $b_{1}=27$ and $q=-\frac{1}{3}$
2. What are the first two terms of the geometric progressions $a_{1}, a_{2}, 24,36,54, \ldots$?
3. Find the common ratio of the geometric progressions $1 / 2,-1 / 2,1 / 2, \ldots$ What is a_{10} ?
4. A geometric progression has 99 terms, the first term is 12 and the last term is 48 . What is the 50 th term?
