MATH 6: HANDOUT 19
 COORDINATES II

Distance Between Points and Circle

The distance between two points $P\left(x_{1}, y_{1}\right)$ and $Q\left(x_{2}, y_{2}\right)$ is given by the following formula:

$$
d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}} .
$$

This formula is a straightforward consequence of the Pythagoras' Theorem.
The equation of the circle with the center $M\left(x_{0}, y_{0}\right)$ and radius r is

$$
\left(x-x_{0}\right)^{2}+\left(y-y_{0}\right)^{2}=r^{2} .
$$

This equation means, that points (x, y) should be at distance r from the given point $M\left(x_{0}, y_{0}\right)$.

Graphs of functions

In particular, if the relation is of the form $y=f(x)$, where f is some function of x (i.e., some formula which contains x), the set of all points whose coordinates satisfy this relation is called the graph of f.

Line. The graph of the function $y=m x+b$ is a straight line. The coefficient m is called the slope.
$y=x ; y=x+2:$

$$
y=-x ; y=-x-2:
$$

$y=\frac{1}{2} x ; y=\frac{1}{2} x+2$

$y=-\frac{1}{2} x ; y=-\frac{1}{2} x-3:$

GRAPH OF $y=|x|$
The figure below shows graphs of functions $y=|x|$.

1. TRASNFORMATIONS

Having these basic graphs, we can produce new graphs, by doing certain transformations of the equations. Here are two of them.

Vertical translations: Adding constant c to the right-hand side of equation shifts the graph by c units up (if c is positive; if c is negative, it shifts by $|c|$ down.)

Horizontal translations: Adding constant c to x shifts the graph by c units left if c is positive; if c is negative, it shifts by c right.

HOMEWORK

1. Find the equation of the line through $(1,1)$ with slope 2 .
2. Find the equation of the line through points $(1,1)$ and $(3,7)$. [Hint: what is the slope?]
3. (a) Find k if $(1,9)$ is on the graph of $y-2 x=k$. Sketch the graph.
(b) Find k if $(1, k)$ is on the graph of $5 x+4 y-1=0$. Sketch the graph.
4. Let l_{1} be the graph of $y=x+1, l_{2}$ be the graph of $y=x-1, m_{1}$ be the graph of $y=-x+1$, and m_{2} be the graph of $y=-x-1$.
(a) Find the intersection point of l_{1} and m_{1}; Label this point P and write down its coordinates.
(b) Find the intersection point of l_{2} and m_{2}; Label this point P and write down its coordinates.
(c) Find the midpoint of $A B$ and write down its coordinates.
(d) Let C be the intersection point of l_{1} with m_{2}, and D be the intersection point of l_{2} with m_{1}. What kind of quadrilateral is $A B C D$?
(e) Explain why l_{1} and l_{2} are parallel. What is the distance between them?
5. Find the intersection point of a line $y=x-3$ and a line $y=-2 x+6$. Sketch the graphs of these lines.
6. (a) Sketch the graphs of functions $y=|x+1|$ and $y=-x+0.25$.
(b) How many solutions do you think this equation has?

$$
|x+1|=-x+0.25
$$

Note: you are not asked to find the solutions - just answer how many are there.
7. (a) Draw the graph of the equation $x^{2}+y^{2}-1=0$.
(b) Draw the graph of the equation $x^{2}+(y-1)^{2}-1=0$.
(c) Draw the graph of the equation $x y=0$.
(d) Draw the graph of the equation $x^{2}+y^{2}=0$.
8. Sketch graphs of the following functions:
(a) $y=|x|+1$
(b) $y=|x+1|$
(c) $y=|x-5|+1$
*9. Sketch the following functions:
(a) $y=|x|+|x+1|$
(b) $y=|x-1|+|x+1|$
(c) $|y|=x$
[Hint: Do draw graphs for (a) and (b), draw the graph of each of the summands, and then try to add the graphs

