REVIEW 1

- Basics of mathematical logic ("Knights and Knaves"). $AND(A \land B)$, $OR(A \lor B)$, $NOT(\overline{A})$, $IF(A \Longrightarrow B$, "implies"). Truth tables.
 - 1. On the Island of Knights(kt) and Knaves(kv), a traveler meets Sue and Jack. Sue says that Jack is a knave, while Jack says "I and Sue are knights". Who is a knight and who is a knave?
 - 2. On the Island of Knights(kt) and Knaves(kv), Bill says that Carl is a knave. Carl tells you, "Of me and Dan, only one is a knight", and Dan says, "Bozo and I are different". Who is a knight and who is a knave?
 - 3. Show that saying "If A is True, then B is False" is equivalent to saying "If B is True, then A is False', whatever statements A and B are.
 - 4. Show that saying "If A is True, then B is True" and "If B is False, then A is True" implies that B has to be True.
- Sets: union $(A \cup B)$, intersection $(A \cap B)$, complement (\overline{A}) . Cardinality.
 - 1. Let

$$\begin{split} F &= \text{set of students who know French,} \\ G &= \text{set of students who know German,} \\ R &= \text{set of students who know Russian.} \\ \text{Describe the following sets:} \\ \text{(a) } F \cup G \ ; \qquad \text{(b) } F \cup (G \cap R) \ ; \end{split}$$

- (c) $(F \cap G) \cup (F \cap R)$; (d) $(F \cap \overline{G})$.
- 2. In a class of 25 students, 10 students know French, 5 students know Russian, 12 know neither. How many students know both French and Russian?
- 3. Let $A = \{ \forall x \mid 1 \le x \le 4 \}, B = \{ \forall x \mid x \ge 2 \}, C = \{ \forall x \mid x \le 3 \}$. Write and draw the following sets: (a) \overline{A} ; (b) $A \cap B$; (c) $A \cap \overline{C}$; (d) $A \cap (\overline{B \cap C})$;
- Factorials and permutations
 - 1. How many ways can one rearrange 7 books on a shelf? What if there are three identical ones?
 - 2. What are the odds to pull four red cards in a row out of a 52-deck card?
 - 3. What are the odds that at least two students in our class have birthdays on the same day? In the same week? (assume that there are 52 weeks in a year)
- Arithmetic and geometric progressions (sequences). Formulas for the terms and the sums.
 - 1. What is the 12-th term of an arithmetic sequence a_n , if $a_3 = 8$ and $a_9 = 44$?
 - 2. An arithmetic sequence of 100 numbers starts with $a_1 = 10$ and ends with $a_{100} = 200$. What is the sum of all the terms from a_1 to a_{100} ?
 - 3. What are the first and the fifth terms of a geometric sequence a_1 , 24, 36, 54, a_5 ?
 - 4. In a geometric series of 15 terms, $a_1 = 5$ and $a_{15} = 320$, what is a_8 ?
 - 5. Compute the sum $1 + \frac{1}{2} + \frac{1}{2^2} + \ldots + \frac{1}{2^8}$.
 - 6. Find the sum of the infinite series $\frac{1}{9} + \frac{1}{27} + \frac{1}{81} \dots$