MATH 7: HANDOUT 2
ALGEBRAIC EXPRESSIONS AND IDENTITIES

Main Algebraic Identities

Reminder from previous class:

$$
\begin{aligned}
& (a+b)^{2}=a^{2}+2 a b+b^{2} \\
& (a-b)^{2}=a^{2}-2 a b+b^{2} \\
& a^{2}-b^{2}=(a-b)(a+b) \\
& (a b)^{n}=a^{n} b^{n} \\
& \sqrt{a b}=\sqrt{a} \sqrt{b}
\end{aligned}
$$

There are also formulas for the third power (cube) of a sum and a difference:

$$
\begin{aligned}
& (a+b)^{3}=a^{3}+3 a^{2} b+3 a b^{2}+b^{3} \\
& (a-b)^{3}=a^{3}-3 a^{2} b+3 a b^{2}-b^{3}
\end{aligned}
$$

and also for the sum and the difference of two cubes (but not for the sum of two squares!)

$$
\begin{aligned}
& a^{3}-b^{3}=(a-b)\left(a^{2}+a b+b^{2}\right) \\
& a^{3}+b^{3}=(a+b)\left(a^{2}-a b+b^{2}\right)
\end{aligned}
$$

Note that one can factor $(a-b)$ in terms of \sqrt{a} and \sqrt{b}, to get

$$
a-b=(\sqrt{a}-\sqrt{b})(\sqrt{a}+\sqrt{b})
$$

which is very helpful in simplifying expressions with roots, for example:

$$
\frac{1}{\sqrt{2}+1}=\frac{1}{\sqrt{2}+1} \times \frac{\sqrt{2}-1}{\sqrt{2}-1}=\frac{\sqrt{2}-1}{2-1}=\sqrt{2}-1
$$

We also discussed solving simple equations where the left hand side is factored as product of linear factors, such as $(x-2)(x+3)=0$. Since any of the factors can make the left hand side to be zero, we record this mathematically in form either of

$$
(x-2)(x+3)=0 \quad \Leftrightarrow \quad\left[\begin{array}{l}
x-2=0 \\
x+3=0
\end{array}\right.
$$

Note that the arrow \Leftrightarrow points both ways meaning equivalence, so we have the same solutions on the left and the right.

CLASSWORK

1. Expand as sums of powers of x and y :
(a) $(2 x+5)^{3}$
(c) $(2 x+3)\left(4 x^{2}-6 x+9\right)$
(b) $(2-4 x)^{3}$
(d) $(x-2 y)\left(x^{2}+2 y+4 y^{2}\right)$
2. Factor (i.e., write as a product) the following expressions:
(a) $a^{3}+6 a^{2} b+12 a b^{2}+8 b^{3}$
(d) $a^{3}+64 b^{3}$
(b) $27 x^{3}-27 x^{2} y+9 x y^{2}-y^{3}$
(e) $a^{6}-b^{6}$
(c) $27 x^{3}-125$
3. Solve the following equations.
(a) $(x-2)(x+5)=0$
(c) $x^{2}-7 x=0$
(b) $\left(y^{2}-9\right)(y+5)=0$
(d) $x^{3}-27=0$
4. Simplify expressions
(a) $\frac{1}{3-\sqrt{2}}$
(c) $\frac{\sqrt{5}+1}{\sqrt{5}-1}$
(b) $\frac{\sqrt{2}+3}{\sqrt{2}-1}$
(d) $\frac{\sqrt{6}+2}{\sqrt{3}-1}$

Homework

1. Collect the factors in the following expressions (simplify to the form $2^{r} 3^{s} a^{m} b^{n}$):
(a) $8 a^{3} b^{2}\left(27 a^{3}\right)\left(2^{5} a b\right)$
(b) $3^{2}(2 a b)^{3}\left(16 a^{2} b^{5}\right)\left(24 b^{2} a\right)$
(c) $16 a^{2} b^{3}\left(6 a b^{4}\right)\left(a b^{2}\right)^{3}$
2. Expand as sums of powers of x and y :
(a) $(y-2 x)^{3}$
(c) $(1-3 x)\left(1+6 x+9 x^{2}\right)$
(b) $(4 x+3)^{3}$
(d) $(x+5 y)\left(x^{2}-5 y+25 y^{2}\right)$
3. Factor (i.e., write as a product) the following expressions:
(a) $3 a^{2}-12 a+12$
(d) $(x-2)^{2}-10(x-2)+25$
(b) $a^{2}-b^{2}-10 b-25$
(e) $64-a^{6} b^{6}$
(c) $(x-2)^{2}-(y+3)^{2}$
(f) $3 x^{3}-x^{2} y+6 x^{2} y-2 x y^{2}+3 x y^{2}-y^{3}$
4. Solve the following equations.
(a) $5(x+1)=3 x+2$
(d) $x^{2}+4 x=0$
(b) $(x-3)(x+4)=0$
(e) $x^{3}+4 x=0$
(c) $\left(x^{2}-1\right)(x+2)=0$
(f) $y^{4}-8 y=0$
5. Simplify expressions
(a) $\frac{1}{2-\sqrt{3}}$
(c) $\frac{\sqrt{5}+2}{\sqrt{5}-1}$
(b) $\frac{\sqrt{3}+1}{\sqrt{3}-1}$
(d) $\frac{\sqrt{7}}{\sqrt{7}-2}$
6. Amanda has an average of 92 on her seven tests. What should she get on her 8 th test to have an average of 93 ?
