Math 7: Handout 13 [2023/01/15] : Vieta Formulas

VIETA FORMULAS

Sometimes we have a problem of finding some expression involving roots of the quadratic equation. Of course, we can always solve the equation, and then do the operations with its roots. However, sometimes it is unnecessary. The formulas below are called Vieta Formulas and allow us to find the sum and the product of roots of a quadratic equation without explicitly calculating them.

$$
\begin{aligned}
x_{1}+x_{2} & =-\frac{b}{a} \\
x_{1} x_{2} & =\frac{c}{a}
\end{aligned}
$$

In a special case if $a=1$, we have:

$$
\begin{aligned}
x_{1}+x_{2} & =-b \\
x_{1} x_{2} & =c
\end{aligned}
$$

Why is it so? If an equation $p(x)=0$ has root x_{1} (i.e., if $p\left(x_{1}\right)=0$), then $p(x)$ is divisible by $\left(x-x_{1}\right)$, i.e. $p(x)=\left(x-x_{1}\right) q(x)$ for some polynomial $q(x)$. Further, if we know both roots $-x_{1}, x_{2}$ - of a quadratic equation $a x^{2}+b x+c=0$, then

$$
a x^{2}+b x+c=a\left(x-x_{1}\right)\left(x-x_{2}\right)
$$

Example: Quadratic equation $2 x^{2}-6 x+2.5=0$ has roots $x_{1}=0.5$ and $x_{2}=2.5$ (you can check it using quadratic formula). Then:

$$
2 x^{2}-6 x+2.5=0=2(x-0.5)(x-2.5)
$$

Now notice that if $a=1$, we have the following:

$$
x^{2}+b x+c=\left(x-x_{1}\right)\left(x-x_{2}\right)
$$

Multiplying the expressions in the right hand side, we get:

$$
\begin{aligned}
x^{2}+b x+c & =\left(x-x_{1}\right)\left(x-x_{2}\right) \\
& =x^{2}-x_{1} \cdot x-x_{2} \cdot x+x_{1} x_{2} \\
& =x^{2}-\left(x_{1}+x_{2}\right) x+x_{1} x_{2}
\end{aligned}
$$

From where we can get the following:

$$
\begin{aligned}
x_{1}+x_{2} & =-b \\
x_{1} x_{2} & =c
\end{aligned}
$$

CLASSWORK

1. Without solving the quadratic equations, try to guess the roots of equations
(a) $x^{2}-5 x+6=0$
(c) $x^{2}-7 x+12=0$
(b) $x^{2}-x-2=0$
(d) $x^{2}-5 x-6=0$
2. Factorize these quadratic expressions
(a) $x^{2}+6 x-7$
(c) $x^{2}+3 x-10$
(e) $x^{4}-7 x-18$
(b) $x^{2}-6 x+5$
(d) $x^{2}-8 x+12$
(f) $x^{4}-17 x+16$
3. (a) Prove that for any $a>0$, one has $a+\frac{1}{a} \geq 2$, with equality only when $a=1$.
(b) Show that for any $a, b \geq 0$, one has $\frac{a+b}{2} \geq \sqrt{a b}$.
(The left hand side is usually called the arithmetic mean of a, b; the right hand side is called the geometric mean of a, b.)

Homework

1. Let x and y be some numbers. Use the formulas discussed in previous classes to express the following expressions using only $(x+y)=a$ and $x y=b$.
Example: Let us express $x^{2}+y^{2}$ using only $x+y$ and $x y$. We know that $(x+y)^{2}=x^{2}+2 x y+y^{2}$. From here, we get:

$$
x^{2}+y^{2}=(x+y)^{2}-2 \times x y=a^{2}-2 \times b
$$

(a) $(x-y)^{2}$
(c) $\frac{1}{x-1}+\frac{1}{y-1}$
(e) $x^{2}-y^{2}$
(b) $\frac{1}{x}+\frac{1}{y}$
(d) $x-y$
(f) $x^{3}+y^{3}$ (Hint: try finding $\left.(x+y)\left(x^{2}+y^{2}\right)\right)$
2. Let x_{1}, x_{2} be roots of the equation $x^{2}+5 x-7=0$. Find
(a) $x_{1}^{2}+x_{2}^{2}$
(b) $\left(x_{1}-x_{2}\right)^{2}$
(c) $\frac{1}{x_{1}}+\frac{1}{x_{2}}$
(d) $x_{1}^{3}+x_{2}^{3}$
3. Solve the following equations:
(a) $x^{2}-9 x+14=0$
(c) $\sqrt{2 x+1}=x$
(b) $x^{2}=1+x$
(d) $x+\frac{1}{x}=3$
4. Solve the equation $x^{4}-3 x^{2}+2=0$

