HW13 is Due January 17; submit it to Google classroom 15 minutes before the class time.

1. Quadratic equation in a standard form.

Today we discussed how one solves the quadratic equation, starting from the standard form: $a x^{2}+b x+c=0$ A quadratic equation could have no solution, one solution, or two solutions depending on the coefficients $a, b, a n d$.

We could solve such an equation by presenting it in a factored form: $\left(x-x_{1}\right)\left(x-x_{2}\right)=0$, where x_{1} and x_{2} are the solutions of the equation, also known as roots. The factored form will also help us find a general formula for solving any quadratic equation using the coefficients a, b, and c .

2. Solving the incomplete quadratic equation by factorizing.

$>$ When $c=0, a x^{2}+b x=0$
To solve, factorize as $x(a x+b)=0$ and set each of the two terms in the product to be equal to zero. The two roots are $x_{1}=0$ and $x_{2}=-b / a$
$>$ When $b=0, a x^{2}+c=0$
If $\mathrm{c}<0$, factorize the equation using the formula for fast multiplication $a^{2}-b^{2}=(a-b)(a+b)$. (*) For example, $x^{2}-25=0 \Rightarrow x^{2}-5^{2}=0 \Rightarrow(x-5)(x+5)=0$. Setting each term in the product to zero gives solutions of +5 and -5 .

If $\mathrm{c}>0$, there are no real solutions. An easy way to see this is to solve directly for x : $x^{2}+25=0 \Rightarrow x^{2}=-5^{2}$; No number squared is equal to a negative number!

2. Solving the complete quadratic equation

$>$ By completing the square

"Completing the square" works by using the formulas for fast multiplication ($a \pm b)^{2}=a^{2} \pm 2 a b+b^{2}$ (*)
Here is an example of how to rewrite the standard form of an equation to factorized form by completing the square:

$$
x^{2}+6 x+2=x^{2}+2 \cdot 3 x+9-9+2=(x+3)^{2}-7=(x+3)^{2}-(\sqrt{7})^{2}=(x+3+\sqrt{7})(x+3-\sqrt{7})
$$

Thus, $x^{2}+6 x+2=0$ if and only if $(x+3+\sqrt{ } 7)=0$, which gives $x=-3-\sqrt{ } 7$, or $(x+3-\sqrt{7})=0$, which gives $x=-3+\sqrt{ } 7$.
> By using the quadratic formula
Completing the square works in general for any quadratic equation in a standard form
If $a=1$, then:

$$
\begin{equation*}
x^{2}+b x+c=x^{2}+2 \frac{b}{2} x+c=\left(x^{2}+2 \frac{b}{2} x+\frac{b^{2}}{2^{2}}\right)-\frac{b^{2}}{2^{2}}+c=\left(x+\frac{b}{2}\right)^{2}-\frac{b^{2}-4 c}{2^{2}}=\left(x+\frac{b}{2}\right)^{2}-\frac{D}{2^{2}} \tag{1}
\end{equation*}
$$

Thus $x^{2}+b x+c=0$ is equivalent to: $\left(x+\frac{b}{2}\right)^{2}=\frac{D}{4}$
If $a \neq 1$, then: $a x^{2}+b x+c=0$ is equivalent to: $\left(x+\frac{b}{2 a}\right)^{2}=\frac{D}{4 a^{2}}$, where $\boldsymbol{D}=\boldsymbol{b}^{\mathbf{2}}-\mathbf{4} \boldsymbol{a} \boldsymbol{c}$
The determinant D determines the number of solutions. $D<0$, there are no real solutions; if $D=0$, there is one solution,
if $D>0$, the solutions are:

$$
\begin{gather*}
x+\frac{b}{2 a}= \pm \sqrt{\frac{D}{4 a^{2}}} \\
x=\frac{-b \pm \sqrt{D}}{2 a} \tag{2}
\end{gather*}
$$

(*) The parameters a and b in the formulas for fast multiplication $a^{2}-b^{2}=(a-b)(a+b),(a \pm b)^{2}=a^{2} \pm 2 a b+$ b^{2} are not the same as the coefficients a, b, and c used in the standard form of the quadratic equation!

Homework problems

Instructions: Please always write solutions on a separate sheet of paper. Solutions should include explanations. I want to see more than just an answer: I also want to see how you arrived at this answer and some justification for why this is indeed the answer. So please include sufficient explanations, which should be clearly written so that I can read them and follow your arguments.
Note: Use the formulas for fast multiplication $a^{2}-b^{2}=(a-b)(a+b),(a \pm b)^{2}=a^{2} \pm 2 a b+b^{2}$.

1. (Optional) This problem requires that you carefully check your work and think:
a. Use formula (1) to prove that for any $x, \quad x^{2}+b x+c \geq-D / 4$, with equality only when $x=-b / 2$.
b. Find the minimal possible value of the expression $x^{2}+4 x+2$ [Hint: use part a) or complete the square]
c. Given a number $a>0$, find the maximal possible value of the expression $x(a-x)$ (the answer will depend on the value or values of a. In this case, a is called a parameter).
2. Convert the following equations to standard form (open brackets). Determine the coefficients a, b, and c . Do not solve the equations!
a. $2(x-3)(x-1)=0$
b. $(x-2)^{2}+(2 x+3)^{2}=13-4 x$
c. $(x-4)(x+4)=1$
3. Solve the following quadratic equations by converting them to factorized form.
a. $2 x^{2}-3 x=0$
b. $x^{2}-15=1$
c. $3 x^{2}-9=0$
d. $2(x-3)(x-1)=0$
4. Complete the square and find the solutions for the following quadratic equations:
a. $x^{2}+4 x+3=0$
b. $y^{2}+4 y-5=0$
 b^{2} are not the same as the coefficients a, b, and c used in the standard form of the quadratic equation!
