MATH 8: HANDOUT 1
 REVIEW I

1. Open parentheses and expand the following expressions
(a) $(a+b)^{2}=$
(b) $(a-b)^{3}=$
2. Factor the following expressions:
(a) $a^{2}-b^{2}=$
(b) $a^{3}-b^{3}=$
(c) $a^{3}+b^{3}=$
3. Expand as sums of powers of x :

$$
(2 x+1)^{2}(2-3 x)
$$

4. A group of 19 people want to select a chairperson and two associates. How many ways there are for them to do so?
5. Solve the equation

$$
x+\frac{1}{x}=4.25
$$

6. Consider the following quadratic equation:

$$
x^{2}-5 x-14=0
$$

(a) What is the discriminant of this equation?
(b) Sketch a graph of this quadratic polynomial
(c) Solve the equation.
7. Let $x+y=7$ and $x y=8$
(a) Write down the quadratic equation so that x and y are its solutions.
(b) Calculate $x^{2}+y^{2}$.

Find the sum of the first 10 terms for the series: $4,7,10,13, \ldots$

Arithmetic Series. Recall how do you obtain your formula. Don't just memorize.

$$
S=a_{1}+a_{2}+a_{3}+\cdots+a_{n}=n \times \frac{a_{1}+a_{n}}{2}
$$

Proof: we write the sum in 2 ways, in increasing order and in decreasing order:
$S=a_{1}+a_{2}+a_{3}+\cdots+a_{n}$
$S=a_{n}+a_{n-1}+a_{n-2}+\cdots+a_{1}$
Adding up left and right sides:

$$
2 S=\left(a_{1}+a_{n}\right)+\left(a_{2}+a_{n-1}\right)+\left(a_{3}+a_{n-2}\right)+\cdots
$$

We notice that:

$$
\begin{gathered}
a_{1}+a_{n}=a_{2}+a_{n-1}=a_{3}+a_{n-2}=\cdots \\
2 S=\left(a_{1}+a_{n}\right) \times n \\
S=\frac{\left(a_{1}+a_{n}\right) \times n}{2}
\end{gathered}
$$

$5+20+80+\ldots+20480$ can be written as,
$5 \times 1+5 \times 4^{1}+5 \times 4^{2}+\ldots+5 \times 4^{6}$
$=5 \times\left(1+4+4^{2}+\ldots+4^{6}\right)=5 \times\left(\frac{4^{7}-1}{4-1}\right)=27305$.

Geometric Series. Recall how do you obtain your formula. Don't just memorize.
$a_{1}+a_{2}+a_{3}+\cdots+a_{n}=a_{1} \times \frac{\left(1-q^{n}\right)}{1-q}$

Proof: To prove this, we write the sum and we multiply it by q :

$$
\begin{aligned}
& S=a_{1}+a_{2}+a_{3}+\cdots \mathrm{a}_{\mathrm{n}-1}+a_{n} \\
& q S=q a_{1}+\mathrm{q} a_{2}+\mathrm{q} a_{3}+\cdots+q a_{n-1}+q a_{n}
\end{aligned}
$$

Remember that $q a_{n-1}=a_{n}$, so that the last term is $q a_{n}=q \times\left(a_{1} \times q^{n-1}\right)=a_{1} \times q^{n}$:

$$
\begin{aligned}
& S=a_{1}+a_{2}+a_{3}+\cdots \mathrm{a}_{\mathrm{n}-1}+a_{n} \\
& q S=a_{2}+a_{3}+a_{4}+\cdots+a_{n}+a_{n+1}
\end{aligned}
$$

Subtracting the second equality from the first, and canceling out the terms, we get:

$$
\begin{aligned}
& S_{n}-q S_{n}=\left(a_{1}-a_{n+1}\right), \quad \text { or } \\
& S_{n}(1-q)=\left(a_{1}-a_{1} q^{n}\right) \\
& S_{n}(1-q)=a_{1}\left(1-q^{n}\right)
\end{aligned}
$$

from which we get the formula above.

