MATH 8 HANDOUT 4: BINOMIAL THEOREM

MAIN FORMULAS OF COMBINATORICS

Recall the numbers ${}_{n}C_{k}$ from Pascal's triangle:

- ${}_{n}C_{k}$ = The number of paths on a chessboard going k units up and n k units to the right = The number of words that can be written using k zeros and n - k ones
 - = The number of ways to choose k items out of n if the order does not matter

We have discussed the following formula for them:

(1)
$${}_{n}C_{k} = \frac{n(n-1)\cdots(n-k+1)}{k(k-1)\cdots1} = \frac{n!}{(n-k)!k!}$$

BINOMIAL FORMULA

These numbers have one more important application:

(2)
$$(a+b)^n = {}_nC_0a^n + {}_nC_1a^{n-1}b^1 + \dots + {}_nC_nb^n$$

The general term in this formula looks like ${}_{n}C_{k} \cdot a^{n-k}b^{k}$. For example, for n = 3 we get

 $(a+b)^3 = a^3 + 3a^2b + 3ab^2 + b^3$

(compare with the 3rd row of Pascal's triangle)

This formula is called the **binomial formula**.

Problems

In all the problems, you can write your answer as a combination of factorials, ${}_{n}C_{k}$, and other arithmetic – you do not have to do the computations. As usual, please write your reasoning, not just the answers!

1. Use the binomial formula to expand the following expressions:

- (a) $(x y)^3$
- (b) $(a+3b)^3$
- (c) $(2x+y)^5$
- (d) $(x+2y)^5$

2. Find the coefficient of x^8 in the expansion of $(2x+3)^{14}$

3. Solve AMC 8 2019