MATH 8

HANDOUT 4: BINOMIAL THEOREM

Main formulas of combinatorics

Recall the numbers ${ }_{n} C_{k}$ from Pascal's triangle:
${ }_{n} C_{k}=$ The number of paths on a chessboard going k units up and $n-k$ units to the right $=$ The number of words that can be written using k zeros and $n-k$ ones $=$ The number of ways to choose k items out of n if the order does not matter

We have discussed the following formula for them:

$$
\begin{equation*}
{ }_{n} C_{k}=\frac{n(n-1) \cdots(n-k+1)}{k(k-1) \cdots 1}=\frac{n!}{(n-k)!k!} \tag{1}
\end{equation*}
$$

Binomial formula
These numbers have one more important application:

$$
\begin{equation*}
(a+b)^{n}={ }_{n} C_{0} a^{n}+{ }_{n} C_{1} a^{n-1} b^{1}+\cdots+{ }_{n} C_{n} b^{n} \tag{2}
\end{equation*}
$$

The general term in this formula looks like ${ }_{n} C_{k} \cdot a^{n-k} b^{k}$. For example, for $n=3$ we get

$$
(a+b)^{3}=a^{3}+3 a^{2} b+3 a b^{2}+b^{3}
$$

(compare with the 3rd row of Pascal's triangle)
This formula is called the binomial formula.

Problems

In all the problems, you can write your answer as a combination of factorials, ${ }_{n} C_{k}$, and other arithmetic - you do not have to do the computations. As usual, please write your reasoning, not just the answers!

1. Use the binomial formula to expand the following expressions:
(a) $(x-y)^{3}$
(b) $(a+3 b)^{3}$
(c) $(2 x+y)^{5}$
(d) $(x+2 y)^{5}$
2. Find the coefficient of x^{8} in the expansion of $(2 x+3)^{14}$
3. Solve AMC 82019
