Geometry.

Thales (intercept) theorem. Similarity and related concepts.

"Space is the greatest thing, as it contains all things"

Thales of Miletus (/'Өerlizz/; Greek: $\Theta \alpha \lambda \tilde{\eta} \varsigma ~(o ̀ ~ M ~ M \eta ́ \sigma \iota o \varsigma), ~$ Thalēs; c. 624 - c. 546 BC) was a pre-Socratic Greek philosopher from Miletus in Asia Minor, and one of the Seven Sages of Greece. Many, most notably Aristotle, regards him as the first philosopher in the Greek tradition.

Thales was probably the first to introduce the scientific method into public discourse. He attempted to explain natural phenomena without reference to mythology and was tremendously influential in this respect. Thales' rejection of mythological explanations became an essential idea for the scientific revolution. He was also the first to define general principles and set forth hypotheses, and as a result has been dubbed the "Father of Science". Aristotle reported Thales' hypothesis about the nature of matter - that the originating principle of nature was a single material substance: water, the first materialist philosophy.

In mathematics, Thales is known for his contribution to geometry, both theoretical as well as practical. Thales understood similar triangles and right triangles, and used that knowledge in practical ways to solve problems such as calculating the height of pyramids and the distance of ships from the shore. The story is told that he measured the height of the pyramids by their shadows at the moment when his own shadow was equal to his height. He is also credited with the first use of deductive reasoning applied to geometry, by deriving four corollaries to Thales' Theorem. As a result, he has been hailed as the first true mathematician.

Thales (intercept) theorem.

Thales' intercept theorem (not to be confused with another theorem with that name, which is a particular case of the inscribed angle theorem) is an important theorem in elementary geometry about the ratios of various line segments that are created if two intersecting lines are intercepted by a pair of parallels. It is equivalent to the theorem about ratios in similar triangles.

Theorem 1. Let parallel lines $\mathrm{AA}^{\prime}, \mathrm{BB}^{\prime}, \mathrm{CC}^{\prime}$ and DD^{\prime} intercept the sides of an angle AOA' such that segments $A B$ and $C D$ on one side of the angle are congruent, $|\mathrm{AB}|=|\mathrm{CD}|$. Then the corresponding segments formed at the intersection of these lines with the other side of the angle are also congruent, $\left|A^{\prime} B^{\prime}\right|=\left|C^{\prime} D^{\prime}\right|$, Fig. 1(a).

Proof. Draw lines A'B' and C'D" parallel to the side $O A$, such that $A A^{\prime} B^{\prime \prime} B$ and CC'D"D are parallelograms, Fig. 1(b). By the property of a parallelogram, $|\mathrm{AB}|=\left|\mathrm{A}^{\prime} \mathrm{B}^{\prime \prime}\right|$, and $|\mathrm{CD}|=\left|\mathrm{C}^{\prime} \mathrm{D}^{\prime \prime}\right|$. Angles $\mathrm{B}^{\prime} \mathrm{A}^{\prime} \mathrm{B}^{\prime \prime}$ and $\mathrm{D}^{\prime} \mathrm{C}^{\prime} \mathrm{D}^{\prime \prime}$ and $\mathrm{A}^{\prime} \mathrm{B}^{\prime \prime} \mathrm{B}^{\prime}$ and $\mathrm{C}^{\prime} \mathrm{D}^{\prime} \mathrm{D}^{\prime}$ are formed by the parallel lines and therefore are congruent. Hence, triangles $A^{\prime} B^{\prime \prime} B^{\prime}$ and $C^{\prime} D^{\prime \prime} D^{\prime}$ are congruent, and therefore $\left|A^{\prime} B^{\prime}\right|=\left|C^{\prime} D^{\prime}\right|$.

Theorem 2. Let the sides of an angle AOA' be intercepted by two parallel lines A^{\prime} and $B B^{\prime}$, Fig. 2. Then, for the segments obtained by these intersections, the following holds.

1. The ratios of any 2 segments on the first line, OA , equal the ratios of the corresponding segments on the second line, OA^{\prime},

$$
\frac{|O A|}{|A B|}=\frac{\left|O A^{\prime}\right|}{\left|A^{\prime} B^{\prime}\right|} \wedge \frac{|O B|}{|O A|}=\frac{\left|O B^{\prime}\right|}{\left|O A^{\prime}\right|} \wedge \frac{|O B|}{|A B|}=\frac{\left|O B^{\prime}\right|}{\left|A^{\prime} B^{\prime}\right|} .
$$

2. The ratio of the 2 segments on the same line

starting at 0 equals the ratio of the segments on the parallels,

$$
\frac{|O A|}{|O B|}=\frac{\left|O A^{\prime}\right|}{\left|O B^{\prime}\right|}=\frac{\left|A A^{\prime}\right|}{\left|B B^{\prime}\right|}
$$

3. The converse of the first statement is true as well, i.e. if the 2 intersecting lines forming the sides of an angle with the vertex 0 are intercepted by 2 arbitrary lines at points A, B on one side and $\mathrm{A}^{\prime}, \mathrm{B}^{\prime}$ on the other, such that $\frac{|O A|}{|O B|}=\frac{\left|O A^{\prime}\right|}{\left|O B^{\prime}\right|}$ holds, then the 2 intercepting lines are parallel. However, the converse of the second statement is not true.
4. If you have more than 2 lines intersecting in 0 , then ratio of the 2 segments on a parallel
 equals the ratio of the according segments on the other parallel. Several examples of parallel lines configurations are shown in the Figure.

$$
\frac{\left|A A^{\prime \prime}\right|}{\left|B B^{\prime \prime}\right|}=\frac{\left|A^{\prime \prime} A^{\prime}\right|}{\left|B^{\prime \prime} B^{\prime}\right|} \frac{\left|A A^{\prime \prime}\right|}{\left|A A^{\prime}\right|}=\frac{\left|B B^{\prime \prime}\right|}{\left|B B^{\prime}\right|} .
$$

Proof. We shall prove the statement 1 above, the rest follows straightforwardly.

According to Thales Theorem (Theorem 1 above), the intercept points of a set of parallel lines passing through the endpoints of an equal length segments on one side of an angle form a set of equal-length segments on the other side of the same angle. Consider the situation where parallel lines AA^{\prime} and BB^{\prime} intercept angle AOA^{\prime}, and assume that $\frac{|A B|}{|O A|}=\frac{\left|A^{\prime} B^{\prime}\right|}{\left|O A^{\prime}\right|}$ does not hold. For definitiveness, let us assume that $\frac{|A B|}{|O A|}>\frac{\left|A^{\prime} B^{\prime}\right|}{\left|O A^{\prime}\right|}$. Then, there exists point $\mathrm{B}^{\prime \prime}$ belonging to the side

$O A^{\prime}$, such that $\left|O B^{\prime \prime}\right|>|O B|$, and $\frac{|A B|}{|O A|}=\frac{\left|A^{\prime} B^{\prime \prime}\right|}{\left|O A^{\prime}\right|}$.
Let us draw a set of lines parallel to AA^{\prime} and BB^{\prime}, such that they divide segment $0 A^{\prime}$ into a set of congruent segments of length $l<\left|\mathrm{B}^{\prime} \mathrm{B}^{\prime}\right|$. If we continue these lines past point A, there are two possibilities. Either segments $O A^{\prime}$ and $O B^{\prime}$ are commensurate and l is their common measure, then one of the lines must coincide with BB^{\prime}, or, the first such line passing farther from 0 than BB^{\prime} is CC^{\prime}, and $\left|\mathrm{OC}^{\prime}\right|<\left|\mathrm{OB}^{\prime \prime}\right|$.

In the first case, both OA and OB and AA^{\prime} and BB^{\prime} are divided into an equal number of congruent segments, and, therefore, $\frac{|A B|}{|O A|}=\frac{\left|A^{\prime} B^{\prime}\right|}{\left|O A^{\prime}\right|}$ holds. In the second case, because all segments obtained at the intercepts of these lines with the sides of the angle are respectively congruent, $\frac{|A C|}{|O A|}=\frac{\left|A^{\prime} C^{\prime}\right|}{\left|O A^{\prime}\right|}$. On the other hand, by construction we have $|\mathrm{AC}|>|\mathrm{AB}|$ and $\left|\mathrm{A}^{\prime} \mathrm{C}^{\prime}\right|<\left|\mathrm{A}^{\prime} \mathrm{B}^{\prime \prime}\right|$, so $\left.\frac{\left|A^{\prime} B^{\prime \prime}\right|}{\left|O A^{\prime}\right|}\right\rangle$ $\frac{\left|A^{\prime} C^{\prime}\right|}{\left|O A^{\prime}\right|}=\frac{|A C|}{|O A|}>\frac{|A B|}{|O A|^{\prime}}$, which contradicts our assumption. Another way to note a contradiction with our assumptions is $\frac{|A B|}{|O A|}<\frac{|A C|}{|O A|}=\frac{\left|A^{\prime} C^{\prime}\right|}{\left|O A^{\prime}\right|}<\frac{\left|A^{\prime} B^{\prime \prime}\right|}{\left|O A^{\prime}\right|}=\frac{|A B|}{|O A|}$. Hence, $\frac{|A B|}{|O A|}=\frac{\left|A^{\prime} B^{\prime}\right|}{\left|O A^{\prime}\right|}$ must hold.

Consequently, $\frac{|O B|}{|O A|}=1+\frac{|A B|}{|O A|}=1+\frac{\left|A^{\prime} B^{\prime}\right|}{\left|O A^{\prime}\right|}=\frac{\left|O B^{\prime}\right|}{\left|O A^{\prime}\right|}$ also holds.
Exercise. Prove claim 2 of the theorem, i. e. $\frac{|O A|}{|O B|}=\frac{\left|O A^{\prime}\right|}{\left|O B^{\prime}\right|}=\frac{\left|A A^{\prime}\right|}{\left|B B^{\prime}\right|}$.

Hint: draw line $\mathrm{B}^{\prime} \mathrm{B}^{\prime \prime}$ parallel to OB and apply the claim 1 proven above to the obtained segments on the angle OA'A.

Heuristic Alternate Proof of Thales Theorem

claim 1

Due to heights of equal length ($C A \| B D$) we have $|\triangle C D A|=|\triangle C B A|$ and therefore $|\triangle S C B|=|\triangle S D A|$. This yields
$\frac{|\triangle S C A|}{|\triangle C D A|}=\frac{|\triangle S C A|}{|\triangle C B A|} \quad \frac{|\triangle S C A|}{|\triangle S D A|}=\frac{|\triangle S C A|}{|\triangle S C B|}$
Plugging in the actual formula for triangle areas ($\frac{\text { base-height }}{2}$) transforms that into $\frac{|S C|}{|C D|} \cdot \frac{|A F|}{|A F|}=\frac{|S A|}{|A B|} \cdot \frac{|E C|}{|E C|} \wedge \frac{|S C|}{|S D|} \cdot \frac{|A F|}{|A F|}=\frac{|S A|}{|S B|} \cdot \frac{|E C|}{|E C|}$

Cancelling the common factors results in:
(a) $\frac{|S C|}{|C D|}=\frac{|S A|}{|A B|}$ and (b) $\frac{|S C|}{|S D|}=\frac{|S A|}{|S B|}$.

Now use (b) to replace $|S A|$ and $|S C|$ in (a) $\frac{\frac{\frac{|S A| \cdot|S D|}{|S B|}}{|C D|}=\frac{\frac{|S B| \cdot|S C|}{|S D|}}{|A B|}}{|c|}$
Using (b) again this simplifies to: (c) $\frac{|S D|}{|C D|}=\frac{|S B|}{|A B|} \square$

claim 2

Draw an additional parallel to $S D$ through A. This parallel intersects $B D$ in G. Then you have $|A C|=|D G|$ and due to claim $1 \frac{|S A|}{|S B|}=\frac{|D G|}{|B D|}$ and therefore $\frac{|S A|}{|S B|}=\frac{|A C|}{|B D|}$.

claim 3

Assume $A C$ and $B D$ are not parallel. Then the parallel line to $A C$ through D intersects $S A$ in $B_{0} \neq B$. Since $|S B|:|S A|=|S D|:|S C|$ is true, we have

$$
|S B|=\frac{|S D| \cdot|S A|}{|S C|}
$$

and on the other hand from claim 2 we have $\left|S B_{0}\right|=\frac{|S D| \cdot|S A|}{|S C|}$. So B and B_{0} are on the same side of S and have the same distance to S, which means $B=B_{0}$. This is a contradiction, so the assumption could not have been true, which means $A C$ and $B D$ are indeed parallel \square

claim 4

Can be shown by applying the intercept theorem for 2 lines.

Related Concepts

Parallel Lines in Triangles and Trapezoids

The intercept theorem can be used to prove that a certain construction yields a parallel line (segment).

If the midpoints of 2 triangle sides are If the midpoints of 2 the non parallel connected then the resulting line sides of a trapezoid are connected, then segment is parallel to the 3rd triangle the resulting line segment is parallel to side. the other 2 sides of the trapezoid.

Similarity and similar Triangles

Arranging 2 similar triangles, so that the intercept theorem can be applied
The intercept theorem is closely related to similarity. In fact it is equivalent to the concept of similar triangles, i.e. it can be used to prove the properties of similar triangles and similar triangles can be used to prove the intercept theorem. By matching identical angles you can always place 2 similar triangles in one another, so that you get the configuration in which the intercepts applies and vice versa the intercept theorem configuration contains always 2 similar triangles.

Algebraic formulation of Compass and Ruler Constructions

There are 3 famous problems in elementary geometry, which were posed by the Greek in terms of Compass and straightedge constructions.

1. Trisecting the angle
2. Doubling the cube
3. Squaring the circle

Their solution took more than 2000 years until all 3 of them finally were settled in the 19th century using algebraic methods that had become available during that period of time. In order to reformulate them in algebraic terms using field extensions, one needs to match field operations with compass and straightedge constructions. In particular it is important to assure that for 2 given line segments, a new line segment can be constructed such that its length equals the product of lengths of the other two. Similarly one needs to be able to construct, for a line segment of length d, a new line segment of length d^{-1}. The intercept theorem can be used to show that in both cases the construction is possible.

Construction of a product

Construction of an Inverse

Dividing a line segment in a given ratio

To divide an arbitrary line segment $\overline{A B}$ in a m: n ratio you draw an arbitrary angle in A with $\overline{A B}$ as one leg. One other leg you construct $m+$ n equidistant points, then you draw line through the last point and B and parallel line through the mth point. This parallel line divides $\overline{A B}$ in the desired ratio. The graphic to the right shows the partition of a line sgement $\overline{A B}$ in a 5:3 ratio.

Applications to Measuring/Survey

Height of the Cheops Pyramid

Figures illustrate measuring pieces and computing C and D
According to some historical sources the Greek mathematician Thales applied the intercept theorem to determine the height of the Cheops' pyramid. The following description illustrates the use of the intercept theorem to compute the height of the Cheops' pyramid, it does however not recount Thales' original work, which was lost.

He measured length of the pyramid's base and the height of his pole. Then at the same time of the day he measured the length pyramid's shadow and the length of the pole's shadow. This yields him the following data to work with:

- height of the pole (A): 1.63 m
- shadow of the pole (B): 2 m
- length of the pyramid base: 230 m
- shadow of the pyramid: 65 m

From this he computed

$$
C=65 m+\frac{230 m}{2}=180 m
$$

Knowing A,B and C he was now able to apply the intercept theorem to compute

$$
D=\frac{C \cdot A}{B}=\frac{1.63 m \cdot 180 m}{2 m}=146.7 m
$$

Measuring the Width of a River

The intercept theorem can be used determine a distance that cannot be measured directly, such as the width of a river or a lake, tall buildings or similar. The graphic to right illustrates the measuring of the width of a river. The segments $|C F|,|C A|,|F E|$ are
 measured and used to compute the wanted

