
October 30, 2022 

Algebra.  

Arithmetic and geometric mean inequality: Proof  by induction. 

The arithmetic mean of 𝑛 numbers, {𝑎1, 𝑎2, … , 𝑎𝑛}, is, by definition,  

𝐴𝑛 =
𝑎1+𝑎2+⋯+𝑎𝑛

𝑛
=

1

𝑛
∑ 𝑎𝑖

𝑛
𝑖=1         (1) 

The geometric mean of n non-negative numbers, {𝑎𝑛 ≥ 0}, is, by definition, 

𝐺𝑛 = √𝑎1 ∙ 𝑎2 ∙ … ∙ 𝑎𝑛
𝑛 = √∏ 𝑎𝑖

𝑛
𝑖=1

𝑛        (2) 

Theorem. For any set of 𝑛 non-negative numbers, the arithmetic mean is not 
smaller than the geometric mean, 

𝑎1+𝑎2+⋯+𝑎𝑛

𝑛
≥ √𝑎1 ∙ 𝑎2 ∙ … ∙ 𝑎𝑛

𝑛         (3) 

The standard proof of this fact by mathematical induction is given below.  

Induction basis. For 𝑛 = 1 the statement is a true equality. We can also easily 
prove that it holds for 𝑛 = 2. Indeed, (𝑎1 + 𝑎2)2 − 4𝑎1𝑎2 = (𝑎1 − 𝑎2)2 ≥ 0

 
⇒ 𝑎1 + 𝑎2 ≥ 2√𝑎1𝑎2. 

Induction hypothesis. Suppose the inequality holds for any set of 𝑛 non-
negative numbers, {𝑎1, 𝑎2, … , 𝑎𝑛}.  

Induction step. We must prove that the inequality then also holds for any set 
of 𝑛 + 1 non-negative numbers, {𝑎1, 𝑎2, … , 𝑎𝑛+1}.  

Proof. If 𝑎1 = 𝑎2 = ⋯ = 𝑎𝑛 = 𝑎𝑛+1, then the equality, 𝐴𝑛+1 = 𝐺𝑛+1, obviously 
holds. If not all numbers are equal, then there is the smallest (smaller than the 
mean) and the largest (larger than the mean). Let these be 𝑎𝑛+1 < 𝐴𝑛+1, and 
𝑎𝑛 > 𝐴𝑛+1. Consider new sequence of 𝑛 non-negative numbers, 
{𝑎1, 𝑎2, … , 𝑎𝑛−1, 𝑎𝑛 + 𝑎𝑛+1 − 𝐴𝑛+1}. The arithmetic mean for these 𝑛 numbers 
is still equal to 𝐴𝑛+1,  

𝑎1+𝑎2+⋯+𝑎𝑛−1+𝑎𝑛+𝑎𝑛+1−𝐴𝑛+1

𝑛
=

𝑛+1

𝑛
𝐴𝑛+1 −

1

𝑛
𝐴𝑛+1 = 𝐴𝑛+1   (4) 



Therefore, by induction hypothesis, 

(𝐴𝑛+1)𝑛 ≥ 𝑎1 ∙ 𝑎2 ∙ … ∙ 𝑎𝑛−1 ∙ (𝑎𝑛 + 𝑎𝑛+1 − 𝐴𝑛+1)    (5) 

(𝐴𝑛+1)𝑛+1 ≥ 𝑎1 ∙ 𝑎2 ∙ … ∙ 𝑎𝑛−1 ∙ (𝑎𝑛 + 𝑎𝑛+1 − 𝐴𝑛+1) ∙ 𝐴𝑛+1   (6) 

Wherein, using 𝑎𝑛+1 < 𝐴𝑛+1 and 𝑎𝑛 > 𝐴𝑛+1, as assumed above, we get  
(𝑎𝑛 − 𝐴𝑛+1)(𝐴𝑛+1 − 𝑎𝑛+1) > 0, or,  𝑎𝑛𝑎𝑛+1 < (𝑎𝑛 + 𝑎𝑛+1 − 𝐴𝑛+1)𝐴𝑛+1, so we 
could substitute the last two terms in the product with 𝑎𝑛 ∙ 𝑎𝑛+1, while 
keeping the inequality. This completes the proof. ¤ 

Review of selected homework problems. 

1. Using mathematical induction, prove that ∀𝑛 ∈ ℕ, 

a. ∑ (2𝑘 − 1)2𝑛
𝑘=1 = 12 + 32 + 52 + ⋯ + (2𝑛 − 1)2 =

4𝑛3−𝑛

3
, 

b.  ∑ (2𝑘)2𝑛
𝑘=1 = 22 + 42 + 62 + ⋯ + (2𝑛)2 =

2𝑛(2𝑛+1)(𝑛+1)

3
 

c. ∑ 𝑘3𝑛
𝑘=1 = 13 + 23 + 33 + ⋯ + 𝑛3 = (1 + 2 + 3 + ⋯ + 𝑛)2 

d. ∑
1

(2𝑘−1)(2𝑘+1)
𝑛
𝑘=1 =

1

1∙3
+

1

3∙5
+

1

5∙7
+ ⋯ +

1

(2𝑛−1)(2𝑛+1)
<

1

2
 

e. ∑
1

(7𝑘−6)(7𝑘+1)
𝑛
𝑘=1 =

1

1∙8
+

1

8∙15
+

1

15∙22
+ ⋯ +

1

(7𝑛−6)(7𝑛+1)
<

1

7
 

f. ∑
1

𝑘

3𝑛+1
𝑘=𝑛+1 =

1

𝑛+1
+

1

𝑛+2
+

1

𝑛+3
+ ⋯ +

1

3𝑛+1
> 1 

Solution of (f)  

Basis: 𝑃1 : ∑
1

𝑘

4
𝑘=2 =

1

2
+

1

3
+

1

4
> 1 

Induction: 𝑃𝑛

 
⇒ 𝑃𝑛+1, where 𝑃𝑛+1 : ∑

1

𝑘

3𝑛+4
𝑘=𝑛+2 =

1

𝑛+2
+

1

𝑛+3
+ ⋯ +

1

3𝑛+4
> 1 

Proof: ∑
1

𝑘

3𝑛+4
𝑘=𝑛+2 =

1

𝑛+2
+

1

𝑛+3
+ ⋯ +

1

3𝑛+1
+

1

3𝑛+2
+

1

3𝑛+3
+

1

3𝑛+4
= ∑

1

𝑘

3𝑛+1
𝑘=𝑛+1 +

1

3𝑛+2
+

1

3𝑛+3
+

1

3𝑛+4
−

1

𝑛+1
> 1, because ∑

1

𝑘

3𝑛+1
𝑘=𝑛+1 > 1 by induction assumption, 

and 
1

3𝑛+2
+

1

3𝑛+3
+

1

3𝑛+4
−

1

𝑛+1
=

1

3
(

1

𝑛+
2

3

+
1

𝑛+
4

3

−
2

𝑛+1
) =

1

3
(

2𝑛+2

(𝑛+
2

3
)(𝑛+

4

3
)

−
2

𝑛+1
) ≥

1

3
(

2𝑛+2

(𝑛+1)2
−

2

𝑛+1
) ≥ 0 (here we used the arithmetic-geometric mean inequality, 

√(𝑛 +
2

3
) (𝑛 +

4

3
) ≤

2𝑛+2

2
= 𝑛 + 1).  



2. Prove by mathematical induction that for any natural number 𝑛,  
a. 5𝑛 + 6𝑛 − 1 is divisible by 10 
b. 9𝑛+1 − 8𝑛 − 9 is divisible by 64  

Solution of (b)  

Basis: 𝑃1: 92 − 72 − 9 = 0 is divisible by 64 

Induction: 𝑃𝑛

 
⇒ 𝑃𝑛+1, where 𝑃𝑛+1: ∃𝑘 ∈ ℤ, 9𝑛+2 − 8(𝑛 + 1) − 9 = 64𝑘 

Proof: 9𝑛+2 − 8(𝑛 + 1) − 9 = 9 ∙ 9𝑛+1 − 8𝑛 − 17 = 9(9𝑛+1 − 8𝑛 − 9) + 64𝑛 +
64 =  64𝑘 if 𝑃𝑛: ∃𝑘′ ∈ ℤ, 9𝑛+1 − 8𝑛 − 9 = 64𝑘′ 

3. Problems on binomial coefficients, which are defined as,  

𝐶𝑛
𝑘 = 𝐶𝑛𝑘

 = (
𝑛
𝑘

) =
𝑛!

𝑘!( 𝑛−𝑘)!
.  

a. Prove that 𝐶𝑛+𝑘
2 + 𝐶𝑛+𝑘+1

2  is a full square 
b. Find 𝑛 satisfying the following equation, 

 𝐶𝑛
𝑛−1 + 𝐶𝑛

𝑛−2 + 𝐶𝑛
𝑛−3 + ⋯ + 𝐶𝑛

𝑛−10 = 1023 

c. Prove that 

𝐶𝑛
1 + 2𝐶𝑛

2 + 3𝐶𝑛
3 + ⋯ + 𝑛𝐶𝑛

𝑛

𝑛
= 2𝑛−1 

Solution of (b)  

𝐶𝑛
𝑛−1 + 𝐶𝑛

𝑛−2 + 𝐶𝑛
𝑛−3 + ⋯ + 𝐶𝑛

𝑛−10 = 𝐶𝑛
1 + 𝐶𝑛

2 + 𝐶𝑛
3 + ⋯ + 𝐶𝑛

10 = 𝐶𝑛
0 + 𝐶𝑛

1 +
𝐶𝑛

2 + 𝐶𝑛
3 + ⋯ + 𝐶𝑛

10 − 1, so, 𝐶𝑛
0 + 𝐶𝑛

1 + 𝐶𝑛
2 + 𝐶𝑛

3 + ⋯ + 𝐶𝑛
10 = 1024 = 210, 

which is satisfied for 𝑛 = 10 thanks to the property of the binomial 
coefficients,  

𝐶𝑛
0 + 𝐶𝑛

1 + 𝐶𝑛
2 + ⋯ + 𝐶𝑛

𝑘 + ⋯ + 𝐶𝑛
𝑛 = (1 + 1)𝑛 = 2𝑛 

Solution of (c)  

𝐶𝑛
1 + 2𝐶𝑛

2 + 3𝐶𝑛
3 + ⋯ + 𝑛𝐶𝑛

𝑛

𝑛
= 𝐶𝑛−1

0 + 𝐶𝑛−1
1 + 𝐶𝑛−1

2 + ⋯ + 𝐶𝑛−1
𝑛−1 = 2𝑛−1 

 


