Algebra.

Recap: Elements of number theory. Euclidean algorithm and greatest common divisor.

Theorem 1 (division representation).

$$
\forall a, b \in \mathbb{Z}, b>0, \exists q, r \in \mathbb{Z}, 0 \leq r<b: a=b q+r
$$

Proof. If a is a multiple of b, then $\exists q \in \mathbb{Z}, r=0: a=b q=b q+r$. Otherwise, if $a>0$, then $\exists q>0 \in \mathbb{Z}: b q<a<b(q+1)$, and $\exists r=a-b q \in \mathbb{Z}: 0<r<$ b. If $a<0$, then $\exists q<0 \in \mathbb{Z}: b(q-1)<a<b q$, and $\exists r=a-b(q-1) \in \mathbb{Z}$: $0<r<b$, which completes the proof.

Definition. A number $d \in \mathbb{Z}$ is a common divisor of two integer numbers $a, b \in$ \mathbb{Z}, if $\exists n, m \in \mathbb{Z}: a=n d, b=m d$.

A set of all positive common divisors of the two numbers $a, b \in \mathbb{Z}$ is limited because these divisors are smaller than the magnitude of the larger of the two numbers. The greatest of the divisors, d, is called the greatest common divisor $(g c d)$ and denoted $d=(a, b)$.

Definition. Two integers $a, b \in \mathbb{Z}$, are called relatively prime if they have no common divisor larger than 1 , i. e. $(a, b)=1$.

Theorem 2. $\forall a, b, q, r \in \mathbb{Z},(a=b q+r) \Rightarrow((a, b)=(b, r))$
Proof. Indeed, if d is a common divisor of $a, b \in \mathbb{Z}$, then $\exists n, m \in \mathbb{Z}$: $a=n d, b=$ $m d \Rightarrow r=a-b q=(n-m q) d$. Therefore, d is also a common divisor of b and $r=a-b q$. Conversely, if d^{\prime} is a common divisor of b and $r=a-b q$, then $\exists n^{\prime}, m^{\prime} \in \mathbb{Z}: b=m^{\prime} d^{\prime}, a-b q=n^{\prime} d^{\prime} \Rightarrow a=\left(n^{\prime}+m^{\prime} q\right) d^{\prime}$, so d^{\prime} is a common divisor of b and a. Hence, the statement of the theorem is valid for any divisor of a, b, and for $g c d$ in particular.

Corollary 1 (Euclidean algorithm). In order to find the greatest common divisor $d=(a, b)$, one proceeds iteratively performing successive divisions,

$$
\begin{gathered}
a=b q+r,(a, b)=(b, r) \\
b=r q_{1}+r_{1},(b, r)=\left(r, r_{1}\right), \\
r=r_{1} q_{2}+r_{2},\left(r, r_{1}\right)=\left(r_{1}, r_{2}\right), \\
r_{1}=r_{2} q_{3}+r_{3},\left(r_{1}, r_{2}\right)=\left(r_{2}, r_{3}\right), \ldots, r_{n-1}=r_{n} q_{n+1} \\
b>r_{1}>r_{2}>r_{3}>\cdots r_{n}>0 \Rightarrow \exists d \leq b, d=r_{n}=(a, b)
\end{gathered}
$$

The last positive remainder, r_{n}, in the sequence $\left\{r_{k}\right\}$ is (a, b), the $g c d$ of the numbers a and b. Indeed, the Eucleadean algorithm ensures that

$$
(a, b)=\left(b, r_{1}\right)=\left(r_{1}, r_{2}\right)=\cdots=\left(r_{n-1}, r_{n}\right)=\left(r_{n}, 0\right)=r_{n}=d
$$

Examples.

a. $(385,105)=(105,70)=(70,35)=(35,0)=35$
b. $(513,304)=(304,209)=(209,95)=(95,19)=(19,0)=19$

Continued fraction representation. Using the Eucleadean algorithm, one can develop a continued fraction representation for rational numbers,

$$
\frac{a}{b}=q+\frac{1}{q_{1}+\frac{1}{q_{2}+\frac{1}{\ldots}+\frac{1}{q_{n}+\frac{1}{q_{n+1}}}}}
$$

This is accomplished by successive substitution, which gives,

$$
\frac{a}{b}=q+\frac{r}{b}=q+\frac{1}{\frac{b}{r}}, \frac{b}{r}=q_{1}+\frac{r_{1}}{r}=q_{1}+\frac{1}{\frac{r}{r}}, \frac{r}{r_{1}}=q_{2}+\frac{1}{\frac{r_{1}}{r_{2}}}, \ldots, \frac{r_{n-1}}{r_{n}}=q_{n+1} .
$$

Exercise. Show the continued fraction representations for $\frac{385}{105}, \frac{513}{304}, \frac{105}{385}, \frac{304}{513}$. Example. $\frac{105}{385}=\frac{1}{\frac{385}{105}}=\frac{1}{3+\frac{1}{\frac{105}{70}}}=\frac{1}{3+\frac{1}{1+\frac{1}{70}} \frac{1}{35}}=\frac{1}{3+\frac{1}{1+\frac{1}{2}}}$.

Corollary 2 (Diophantine equation). $(d=(a, b)) \Rightarrow(\exists k, l \in \mathbb{Z}: d=k a+l b)$
Proof. Consider the sequence of remainders in the Euclidean algorithm, $r=$ $a-b q, r_{1}=b-r q_{1}, r_{2}=r-r_{1} q_{2}, r_{3}=r_{1}-r_{2} q_{3}, \ldots, r_{n}=r_{n-2}-r_{n-1} q_{n}$. Indeed, the successive substitution gives, $r=a-b q, r_{1}=b-(a-b q) q_{1}=$ $k_{1} a+l_{1} b, r_{2}=r-\left(k_{1} a+l_{1} b\right) q_{2}=k_{2} a+l_{2} b,, \ldots, r_{n}=r_{n-2}-\left(k_{n-1} a+\right.$ $\left.l_{n-1} b\right) q_{n}=k_{n} a+l_{n} b=d=(a, b)$.

It follows that if d is a common divisor of a and b, then equation $a x+b y=d$, called the Diophantine equation, has solution for integer $x, y \in \mathbb{Z}$.

Exercise. Find the representation $d=k a+l b$ for the pairs $(385,105)$ and $(513,304)$ considered in the above examples.

Recap: Elements of number theory. Modular arithmetic.

Definition. For $a, b, n \in \mathbb{Z}$, the congruence relation, $a \equiv b \bmod n$, denotes that, $a-b$ is a multiple of n, or, $\exists q \in \mathbb{Z}, a=n q+b$.

All integers congruent to a given number $r \in \mathbb{Z}$ with respect to a division by $n \in \mathbb{Z}$ form congruence classes, $[r]_{n}$. For example, for $n=3$,

$$
\begin{gathered}
{[0]_{3}=\{\ldots,-6,-3,0,3,6, \ldots\}} \\
{[1]_{3}=\{\ldots,-2,1,4,7, \ldots\}} \\
{[2]_{3}=\{\ldots,-1,2,5,8, \ldots\}} \\
{[3]_{3}=\{\ldots,-6,-3,0,3,6, \ldots\}=[0]_{3}}
\end{gathered}
$$

There are exactly n congruence classes $\bmod n$, forming set Z_{n}. In the above example $n=3$, the set of equivalence classes is $Z_{3}=\left\{[0]_{3},[1]_{3},[2]_{3}\right\}$. For general n, the set is $Z_{n}=\left\{[0]_{n},[1]_{n}, \ldots,[n-1]_{n}\right\}$, because $[n]_{n}=[0]_{n}$.

One can define addition and multiplication in Z_{n} in the usual way,

$$
\begin{gathered}
{[a]_{n}+[b]_{n}=[a+b]_{n}} \\
{[a]_{n} \cdot[b]_{n}=[a \cdot b]_{n}} \\
\left([a]_{n}\right)^{p}=\left[a^{p}\right]_{n}, p \in \mathbb{N}
\end{gathered}
$$

Here the last relation for power follows from the definition of multiplication.
Exercise. Check that so defined operations do not depend on the choice of representatives a, b in each equivalence class.

Exercise. Check that so defined operations of addition and multiplication satisfy all the usual rules: associativity, commutativity, distributivity.

In general, however, it is impossible to define division in the usual way: for example, $[2]_{6} \cdot[3]_{6}=[6]_{6}=[0]_{6}$, but one cannot divide both sides by $[3]_{6}$ to obtain $[2]_{6}=[0]_{6}$. In other words, for general n an element $[a]_{n}$ of Z_{n} could give [0$]_{n}$ upon multiplication by some of the elements in Z_{n} and therefore would not have properties of an algebraic inverse, so there may exist elements in Z_{n} which do not have inverse. In practice, this means that if we try to define an inverse element, $\left[r^{-1}\right]_{n}$, to an element $[r]_{n}$ employing the usual relation, $[r]_{n} \cdot\left[r^{-1}\right]_{n}=[1]_{n}$, there might be no element $\left[r^{-1}\right]_{n}$ in class Z_{n} satisfying this equation. However, it is possible to define the inverse for some special values of r and n. The corresponding classes $[r]_{n}$ are called invertible in Z_{n}.

Definition. The congruence class $[r]_{n} \in Z_{n}$ is called invertible in Z_{n}, if there exists a class $\left[r^{-1}\right]_{n} \in Z_{n}$, such that $[r]_{n} \cdot\left[r^{-1}\right]_{n}=[1]_{n}$.

Theorem. Congruence class $[r]_{n} \in Z_{n}$ is invertible in Z_{n}, if and only if r and n are mutually prime, $(r, n)=1$. Or, $\forall[r]_{n},\left(\exists\left[r^{-1}\right]_{n} \in Z_{n}\right) \Leftrightarrow((r, n)=1)$.

To find the inverse of $[a] \in Z_{n}$, we have to solve the equation, $a x+n y=1$, which can be done using Eucleadean algorithm. Then, $a x \equiv 1 \bmod n$, and $[a]^{-1}=[x]$.

Examples.

3 is invertible mod 10, i. e. in Z_{10}, because $[3]_{10} \cdot[7]_{10}=[21]_{10}=[1]_{10}$, but is not invertible mod 9, i. e. in Z_{9}, because $[3]_{9} \cdot[3]_{9}=[0]_{9}$.

7 is invertible in $Z_{15}:[7]_{15} \cdot[13]_{15}=[91]_{15}=[1]_{15}$, but is not invertible in Z_{14} :
$[7]_{14} \cdot[2]_{14}=[14]_{14}=[0]_{14}$.

