Homework for December 11, 2022.

Algebra.

Review the classwork handout. Solve the remaining problems from the previous homework assignments and classwork exercises. Try solving the following problems.

- 1. Using the inclusion-exclusion principle, find how many natural numbers n < 100 are not divisible by 3, 5 or 7.
- 2. Four letters *a*, *b*, *c*, *d*, are written down in random order. Using the inclusion-exclusion principle, find probability that at least one letter will occupy its alphabetically ordered place? What is the probability for five letters?
- 3. Using the inclusion-exclusion principle, find the probability that if we randomly write a row of digits from 0 to 9, no digit will appear in its proper ordered position.
- 4. Secretary prepared 5 different letters to be sent to 5 different addresses. For each letter, she prepared an envelope with its correct address. If the 5 letters are to be put into the 5 envelopes at random, what is the probability that
 - a. no letter will be put into the envelope with its correct address?
 - b. only 1 letter will be put into the envelope with its correct address?
 - c. only 2 letters will be put into the envelope with its correct address?
 - d. only 3 letters will be put into the envelope with its correct address?
 - e. only 4 letters will be put into the envelope with its correct address?
 - f. all 5 letters will be put into the envelope with its correct address?
- 5. Among 24 students in a class, 14 study mathematics, 10 study science, and 8 study French. Also, 6 study mathematics and science, 5 study mathematics and French, and 4 study science and French. We know that 3 students study all three subjects. How many of these students study none of the three subjects?
- 6. In a survey on the students' chewing gum preferences, it was found that
 - a. 20 like juicy fruit.
 - b. 25 like spearmint.
 - c. 33 like watermelon.
 - d. 12 like spearmint and juicy fruit.
 - e. 16 like juicy fruit and watermelon.
 - f. 20 like spearmint and watermelon.

g. 5 like all three flavors.

h. 4 like none.

How many students were surveyed?

Geometry.

Review the previous classwork notes. Solve the following problems, including problems from the last homework (if you have not solved them yet).

Problems.

- 1. **Tangent line** to a circle is a line that has one and only one common point with the circle (definition). Prove that tangent line *AB* is perpendicular to the radius *OP* ending at the point *P*, which is the common point of the line and the circle (see Figure on the right).
- We know from geometry that a circle can be drawn through the three vertices of any triangle. Find a radius of such circle if the sides of the triangle are 6, 8, and 10. (Gelfand and Saul "Trigonometry" p60, #4).
- 3. Prove that in the Figure on the right, $\angle \alpha$ is congruent to $\angle \beta$ if $AB \perp CD$ and $A'B' \perp C'D'$.
- 4. Using a compass and a ruler, draw a circle inscribed in the given triangle *ABC*. Prove the following formula for the area of the triangle,

$$S_{ABC} = \frac{1}{2}pr$$
,

where p is the perimeter of the triangle and r the radius of the inscribed circle.

5. Prove the Viviani's theorem:

The sum of distances of a point P inside an equilateral triangle or on one of its sides, from the sides, equals the length of its altitude. Or, alternately,

From a point *P* inside (or on a side) of an equilateral triangle *ABC* drop perpendiculars PP_a , PP_b , PP_c to its sides. The sum $|PP_a| + |PP_b| + |PP_c|$ is independent of *P* and is equal to any of the triangle's altitudes.

- 6. * Three Points are taken at random on an infinite plane. Find the chance of their being the vertices of an obtuse-angled Triangle. Hint: use the Viviani's theorem.
- 7. In a triangle *ABC*, Cevian segments *AA'*, *BB'* and *CC'* are concurrent and cross at a point *M* (point *C'* is on the side *AB*, point *B'* is on the side *AC*, and point *A'* is on the side *BC*). Given the ratios $\frac{AC'}{C'B} = p$ and $\frac{AB'}{B'C} = q$, find the ratio $\frac{AM}{MA'}$ (express it through *p* and *q*).
- 8. What is the ratio of the two segments into which a line passing through the vertex *A* and the middle of the median *BB*' of the triangle *ABC* divides the median *CC*'?
- 9. In a triangle ABC, A', B' and C' are the tangent points of the inscribed circle and the sides BC, AC, and AB, respectively (see Figure). Prove that cevians AA', BB' and CC' are concurrent (their common point F is called the Gergonne point).

