Algebra.

Equivalence relations and partitions.

Definition. A binary relation on a set A,

$$
x \sim y, \quad x, y \in A
$$

is a collection of ordered pairs of elements of $A,\{(x, y)\}, x, y \in A$. In other words, it is a subset of the Cartesian product $A^{2}=A \times A$.

More generally, a binary relation between two sets A and B is a subset of $A \times B$. The terms correspondence, dyadic relation and 2-place relation are synonyms for binary relation.

Example 1. A binary relation > ("is greater than") between real numbers $x, y \in \mathbb{R}$ associates to every real number all real numbers that are to the left of it on the number axis.

Example 2. A binary relation "is the divisor of " between the set of prime numbers P and the set of integers \mathbb{Z} associates every prime p with every integer n that is a multiple of p, but not with integers that are not multiples of p. In this relation, the prime 3 is associated with numbers that include $-6,0$, 6,9 , but not 2 or -8 ; and the prime 5 is associated with numbers that include 0,10 , and 125 , but not 6 or 11 .

Injections, surjections, bijections between the sets are established by defining the corresponding (injective, surjective, or one-to-one) binary relations between the elements of these sets. A relation $x \sim y$ is,

- left-total: $\forall x \in X, \exists y \in Y, x \sim y$, a relation is left-total when it is a function, or a multivalued function;
- surjective (right-total, or onto): $\forall y \in Y, \exists x \in X, x \sim y$;
- injective (left-unique): $\forall\left(x_{1}, x_{2}, \in X, y \in Y\right),\left(\left(x_{1} \sim y\right) \wedge\left(x_{2} \sim y\right)\right.$ $\left.\Rightarrow\left(x_{1}=x_{2}\right)\right)$
- functional (right-unique, also called univalent, or right-definite): $\forall\left(x \in X, y_{1}, y_{2}, \in Y\right),\left(\left(x \sim y_{1}\right) \wedge\left(x \sim y_{2}\right) \Rightarrow\left(y_{1}=y_{2}\right)\right)$, such a binary relation is also called a partial function;
- one-to-one: injective and functional.

A binary relation $x \sim y$ is

- reflexive if $\forall x \in A$, we have $x \sim x$
- symmetric if $\forall x, y \in A$, we have $(x \sim y) \Rightarrow(y \sim x)$
- transitive if $\forall x, y, z \in A$, we have $(x \sim y) \wedge(y \sim z) \Rightarrow(x \sim z)$

Definition. An equivalence relation is a binary relation that is reflexive, symmetric, and transitive.

Given an equivalence relation on A, we can define, for every $a \in A$, its equivalence class [a] as the following subset of A :

$$
[a]=\{x \in A,(x \sim a)\}
$$

Definition. A partition of a set A is decomposition of it into non-intersecting subsets:

$$
A=A_{1} \cup A_{2} \ldots \cup A_{n} \ldots
$$

with $A_{i} \cap A_{j}=\emptyset$. It is allowed to have infinitely many subsets A_{i}.
Theorem. If \sim is an equivalence relation on a set A, then it defines a partition of A into equivalence classes.

Example. Define the equivalence relation on \mathbb{Z} by congruence \bmod 3: $a \equiv$ $b \bmod 3$ if $a-b$ is a multiple of 3 . This defines a partition, $[0]=\{\ldots,-6$, $-3,0,3,6, \ldots\},[1]=\{\ldots,-2,1,4,7, \ldots\},[2]=\{\ldots,-1,2,5,8, \ldots\}$.

Exercise 1. Present examples of binary relations that are, and that are not equivalence relations. For each of the following relations, check whether it is an equivalence relation.

- On the set of all lines in the plane: relation of being parallel
- On the set of all lines in the plane: relation of being perpendicular
- On \mathbb{R} : relation given by $x \sim y$ if $x+y \in \mathbb{Z}$
- On \mathbb{R} : relation given by $x \sim y$ if $x-y \in \mathbb{Z}$
- On \mathbb{R} : relation given by $x \sim y$ if $x>y$
- On $\mathbb{R}-\{0\}$: relation given by $x \sim y$ if $x y>0$

Exercise 2. Let \sim be an equivalence relation on A.

- Prove that if $a \sim b$, then $[a]=[b]: \forall x \in A, x \in[a] \Rightarrow x \in[b]$
- Prove that if $a \times b$, then $[a] \cap[b]=\emptyset$.

Exercise 3. Let $f: A \xrightarrow{f} B$ be a function. Define a relation on A by $a \sim b$ if $f(a)=f(b)$. Prove that it is an equivalence relation.

Exercise 4. For a positive integer number $n \in \mathbb{N}$, define relation \equiv on \mathbb{Z} by $a \equiv$ b if $a-b$ is a multiple of n

- Prove that it is an equivalence relation;
- Describe equivalence class [0];
- Prove that equivalence class of $[a+b]$ only depends on equivalence classes of a, b, that is, if $[a]=\left[a^{\prime}\right],[b]=\left[b^{\prime}\right]$, then $[a+b]=\left[a^{\prime}+b^{\prime}\right]$.

Exercise 5. Define a relation \sim on $\mathbb{R}^{2}=\mathbb{R} \times \mathbb{R}$ by $\left(x_{1}, y_{1}\right) \sim\left(x_{2}, y_{2}\right)$ if $x_{1}+$ $y_{1}=x_{2}+y_{2}$. Prove that it is an equivalence relation and describe the equivalence class of $(1,2)$.

Exercise 6. Is it possible to partition the set of all integers, \mathbb{Z}, into equivalence classes using the binary relation $p \sim q: p \equiv \bmod (q)$ (" p is a multiple of $q^{\prime \prime}$), which was defined in Example 2.

Recap: Elements of number theory. Modular arithmetics.

Definition. For $a, b, n \in \mathbb{Z}$, the congruence relation, $a \equiv b \bmod n$, denotes that, $a-b$ is a multiple of n, or, $\exists q \in \mathbb{Z}, a=n q+b$.

All integers congruent to a given number $r \in \mathbb{Z}$ with respect to a division by $n \in \mathbb{Z}$ form congruence classes, $[r]_{n}$. For example, for $n=3$,

$$
\begin{gathered}
{[0]_{3}=\{\ldots,-6,-3,0,3,6, \ldots\}} \\
{[1]_{3}=\{\ldots,-2,1,4,7, \ldots\}} \\
{[2]_{3}=\{\ldots,-1,2,5,8, \ldots\}} \\
{[3]_{3}=\{\ldots,-6,-3,0,3,6, \ldots\}=[0]_{3}}
\end{gathered}
$$

There are exactly n congruence classes $\bmod n$, forming set Z_{n}. In the above example $n=3$, the set of equivalence classes is $Z_{3}=\left\{[0]_{3},[1]_{3},[2]_{3}\right\}$. For general n, the set is $Z_{n}=\left\{[0]_{n},[1]_{n}, \ldots,[n-1]_{n}\right\}$, because $[n]_{n}=[0]_{n}$.

One can define addition and multiplication in Z_{n} in the usual way,

$$
\begin{gathered}
{[a]_{n}+[b]_{n}=[a+b]_{n}} \\
{[a]_{n} \cdot[b]_{n}=[a \cdot b]_{n}} \\
\left([a]_{n}\right)^{p}=\left[a^{p}\right]_{n}, p \in \mathbb{N}
\end{gathered}
$$

Here the last relation for power follows from the definition of multiplication.
Exercise. Check that so defined operations do not depend on the choice of representatives a, b in each equivalence class.

Exercise. Check that so defined operations of addition and multiplication satisfy all the usual rules: associativity, commutativity, distributivity.

In general, however, it is impossible to define division in the usual way: for example, $[2]_{6} \cdot[3]_{6}=[6]_{6}=[0]_{6}$, but one cannot divide both sides by $[3]_{6}$ to obtain $[2]_{6}=[0]_{6}$. In other words, for general n an element $[a]_{n}$ of Z_{n} could give $[0]_{n}$ upon multiplication by some of the elements in Z_{n} and therefore would not have properties of an algebraic inverse, so there may exist elements in Z_{n}
which do not have inverse. In practice, this means that if we try to define an inverse element, $\left[r^{-1}\right]_{n}$, to an element $[r]_{n}$ employing the usual relation, $[r]_{n} \cdot\left[r^{-1}\right]_{n}=[1]_{n}$, there might be no element $\left[r^{-1}\right]_{n}$ in class Z_{n} satisfying this equation. However, it is possible to define the inverse for some special values of r and n. The corresponding classes $[r]_{n}$ are called invertible in Z_{n}.

Definition. The congruence class $[r]_{n} \in Z_{n}$ is called invertible in Z_{n}, if there exists a class $\left[r^{-1}\right]_{n} \in Z_{n}$, such that $[r]_{n} \cdot\left[r^{-1}\right]_{n}=[1]_{n}$.

Theorem. Congruence class $[r]_{n} \in Z_{n}$ is invertible in Z_{n}, if and only if r and n are mutually prime, $(r, n)=1$. Or, $\forall[r]_{n},\left(\exists\left[r^{-1}\right]_{n} \in Z_{n}\right) \Leftrightarrow((r, n)=1)$.

To find the inverse of $[a] \in Z_{n}$, we have to solve the equation, $a x+n y=1$, which can be done using Eucleadean algorithm. Then, $a x \equiv 1 \bmod n$, and $[a]^{-1}=[x]$.

Examples.

3 is invertible $\bmod 10$, i. e. in Z_{10}, because $[3]_{10} \cdot[7]_{10}=[21]_{10}=[1]_{10}$, but is not invertible mod 9 , i. e. in Z_{9}, because $[3]_{9} \cdot[3]_{9}=[0]_{9}$.

7 is invertible in $Z_{15}:[7]_{15} \cdot[13]_{15}=[91]_{15}=[1]_{15}$, but is not invertible in Z_{14} : $[7]_{14} \cdot[2]_{14}=[14]_{14}=[0]_{14}$.

