Geometry.

Ellipse. Hyperbola. Parabola (continued).

Alternate definitions of ellipse, hyperbola and parabola: Tangent circles.

Ellipse is the locus of centers of all circles tangent to two given nested circles $\left(F_{1}, R\right)$ and $\left(F_{2}, r\right)$. Its foci are the centers of these given circles, F_{1} and F_{2}, and the major axis equals the sum of the radii of the two circles, $2 a=R+r$ (if circles are externally tangential to both given circles, as shown in the figure), or the difference of their radii (if circles contain smaller circle $\left(F_{2}, r\right)$.).

Consider circles $\left(F_{1}, R\right)$ and $\left(F_{2}, r\right)$. that are not
 nested. Then the loci of the centers 0 of circles externally tangent to these two satisfy $\left|O F_{1}\right|-$ $\left|O F_{2}\right|=R-r$.

Hyperbola is the locus of the centers of circles tangent to two given non-nested circles. Its foci are the centers of these given circles, and the vertex distance $2 a$ equals the difference in radii of the two circles.

As a special case, one given circle may be a point located at one focus; since a point may be considered as a circle of zero radius, the other given circlewhich is centered on the other focus-must have radius $2 a$. This provides a simple technique for constructing a hyperbola.

Exercise. Show that it follows from the above definition that a tangent line to the hyperbola at a point P bisects the angle formed with the two foci, i.e., the angle $\mathrm{F}_{1} \mathrm{PF}_{2}$. Consequently, the feet of perpendiculars drawn from each focus to such a tangent line lie on a circle of radius a that is centered on the hyperbola's own center.

If the radius of one of the given circles is zero, then it shrinks to a point, and if the radius of the other given circle becomes infinitely large, then the "circle" becomes just a straight line.

Parabola is the locus of the centers of circles passing through a given point and tangent to a given line. The point is the focus of the parabola, and the line is the directrix.

Alternate definitions of ellipse, hyperbola and parabola: Directrix and Focus.

Parabola is the locus of points such that the ratio of the distance to a given point (focus) and a given line (directrix) equals 1.

Ellipse can be defined as the locus of points P for which the distance to a given point (focus F_{2}) is a constant fraction of the perpendicular distance to a given line, called the directrix, $\left|P F_{2}\right| /|P D|=e<1$.

Hyperbola can also be defined as the locus of points for which the ratio of the distances to one focus and to a line (called the directrix) is a constant e. However, for a hyperbola it is larger than 1 , $\left|P F_{2}\right| /|P D|=e>1$. This constant is the eccentricity of the hyperbola. By symmetry a hyperbola has two directrices, which are parallel to the conjugate
 axis and are between it and the tangent to the hyperbola at a vertex.

In order to show that the above definitions indeed those of an ellipse and a hyperbola, let us obtain relation between the x and y coordinates of a point P (x, y) satisfying the definition. Using axes shown in the Figure, with focus F_{2} on the X axis at a distance l from the origin and choosing the Y -axis for the directrix, we have

$$
\begin{gathered}
\frac{\sqrt{(x-l)^{2}+y^{2}}}{x}=e \\
(x-l)^{2}+y^{2}=(e x)^{2}
\end{gathered}
$$

$$
\begin{aligned}
x^{2}\left(1-e^{2}\right)-2 l x+l^{2}+y^{2} & =0 \\
\left(1-e^{2}\right)\left(x^{2}-2 x \frac{l}{1-e^{2}}+\left(\frac{l}{1-e^{2}}\right)^{2}\right)+y^{2} & =\frac{l^{2}}{1-e^{2}}-l^{2}=\frac{e^{2} l^{2}}{1-e^{2}}
\end{aligned}
$$

Finally, we thus obtain,

$$
\frac{\left(x-\frac{l}{1-e^{2}}\right)^{2}}{\frac{e^{2} l^{2}}{\left(1-e^{2}\right)^{2}}}+\frac{y^{2}}{\frac{e^{2} l^{2}}{1-e^{2}}}=1
$$

Which is the equation of an ellipse for $1-e^{2}>0$ and of a hyperbola for $1-$ $e^{2}<0$. In each case the center is at $x=x_{0}=\frac{l}{1-e^{2}}$ and $y=y_{0}=0$, and the semi-axes are $a=\frac{e l}{\left(1-e^{2}\right)}$ and $b=\frac{e l}{\sqrt{\left|1-e^{2}\right|}}$, which brings the equation to a canonical form,

$$
\frac{\left(x-x_{0}\right)^{2}}{a^{2}} \pm \frac{\left(y-y_{0}\right)^{2}}{b^{2}}=1
$$

We also obtain the following relations between the eccentricity e and the ratio of the semi-axes, $\mathrm{a} / \mathrm{b}: \frac{b}{a}=\sqrt{\left|1-e^{2}\right|}$, or, $e=\sqrt{1 \pm\left(\frac{b}{a}\right)^{2}}$, where plus and minus sign correspond to the case of a hyperbola and an ellipse, respectively.

Curves of the second degree.

A curve of the second degree is a set of points whose coordinates in some (and therefore in any) Cartesian coordinate system satisfy a second order equation,

$$
a_{11} x^{2}+a_{12} x y+a_{22} x^{2}+2 b_{1} x+2 b_{2} y+c=0
$$

Solutions of some past homework problems.

1. Problem. Consider all triangles with a given base and given altitude corresponding to this base. Prove that among all these triangles the isosceles triangle has the biggest angle opposite to the base.

Solution. Consider a circumscribed circle for different triangles, an isosceles triangle $A B C$ and some other triangle, $A B C^{\prime}$, which share the base $A B$ and have the same altitude. For all such triangles, the center of the circumscribed circle will belong to the mid-perpendicular of the base $A B$, ie the altitude of an isosceles triangle on this base, or its continuation. If O is the center of the circle circumscribed around the isosceles
 triangle $A B C$ and O^{\prime} is the center of the circumscribed circle for any other triangle with the same altitude, $A B C$ (on the same side of $A B$), then O^{\prime} lies farther from $A B$ than O (see figure). Consequently, $\angle A O B$ is larger than $\angle A O^{\prime} B$. But by the inscribed angle theorem, $\angle A O B=2 \angle A C B, \angle A O^{\prime} B=$ $2 \angle A C^{\prime} B$, and therefore, $\angle A C B>\angle A C^{\prime} B$.
2. Problem. Prove that the length of the bisector segment $B B^{\prime}$ of the angle $\angle B$ of a triangle $A B C$ satisfies $\left|B B^{\prime}\right|^{2}=|A B||B C|-\left|A B^{\prime}\right|\left|B^{\prime} C\right|$.

Solution. Consider the construction used to prove the property of a bisector: an isosceles triangle $C B D, C B=$ $B D=a$. (Recap: the property of a bisector, $B B^{\prime}$, is obtained by applying Thales theorem to the angle $D A C$ and two parallel lines, $B B^{\prime}$ and $C D$; we then obtain, $\left.\left|A B^{\prime}\right|:\left|B^{\prime} C\right|=|A B|:|B C|\right)$. Draw a circumscribed circle around the triangle $A C D$ and extend the bisector $B B$ to obtain the chord $E G$ containing $B B^{\prime}$. By symmetry, $|E B|=|B G|$ (see Figure). By the property of
 intersecting chords (Euclid's theorem), we have, $|A B||B D|=|E B||B G|=$ $|E B|^{2}=\left(\left|B B^{\prime}\right|+\left|B^{\prime} E\right|\right)^{2}$, wherefrom, $\left|B B^{\prime}\right|^{2}=|A B||B D|-\left|B^{\prime} E\right|\left(\left|B^{\prime} E\right|+\right.$ $\left.2\left|B B^{\prime}\right|\right)$. On the other hand, by the same theorem, $\left|B^{\prime} E\right|\left|B^{\prime} G\right|=\left|B^{\prime} E\right|\left(\left|B^{\prime} E\right|+\right.$ $\left.2\left|B B^{\prime}\right|\right)=\left|A B^{\prime}\right|\left|B^{\prime} C\right|$. Combining these two expressions, we obtain $\left|B B^{\prime}\right|^{2}=$ $|A B||B C|-\left|A B^{\prime}\right|\left|B^{\prime} C\right|$.
3. Problem. In an isosceles triangle $A B C$ with the angles at the base, $\angle B A C=$ $\angle B C A=80^{\circ}$, two Cevians $C C^{\prime}$ and $A A^{\prime}$ are drawn at an angles $\angle B C C^{\prime}=30^{\circ}$ and $\angle B A A^{\prime}=20^{\circ}$ to the sides, $C B$ and $A B$, respectively (see Figure). Find the angle $\angle A A^{\prime} C^{\prime}=x$ between the Cevian $A A^{\prime}$ and the segment $A^{\prime} C^{\prime}$ connecting the endpoints of these two Cevians.

Solution. Consider the figure. Find isosceles and congruent triangles $\left(\operatorname{eg}\left|C^{\prime} D\right|=\left|C^{\prime} O\right|\right.$, $\left.\left|A C^{\prime}\right|=|A C|=|A O|, \Delta A^{\prime} C^{\prime} D \cong \Delta A^{\prime} C^{\prime} O, \ldots\right)$. It then follows that $\angle D C^{\prime} O=\angle C^{\prime} O A^{\prime}=$ 100°, and $x=30^{\circ}$.

