Acceleration

- Acceleration:

$$
a=\frac{\text { change in velocity }}{\text { change in time }}=\frac{\Delta v}{\Delta t}
$$

Standard units of acceleration : m/s ${ }^{2}$ (meters per second per second)

- If there were no air resistance, all objects in Earth gravity would fall with the same acceleration,

$$
\begin{gathered}
\mathrm{g}=9.81 \mathrm{~m} / \mathrm{s}^{2} \\
\text { (directed downward) }
\end{gathered}
$$

Homework 5

Problem 1.

The largest passenger airplane, Airbus A380, needs 40 seconds to reach its takeoff speed, $v=280 \mathrm{~km} / \mathrm{h}$. What is the acceleration of the plane? Convert your answer to $\mathrm{m} / \mathrm{s}^{2}$.

Problem 2.

If in the future humans are to reach the nearby stars, they would need spaceships traveling with speed close to the speed of light. Imagine that a spaceship is accelerating with acceleration $10 \mathrm{~m} / \mathrm{s}^{2}$ (more or less equal to the Earth's gravitational acceleration).
a) How long would it take such a ship to reach $1 / 10$ of the speed of light? Speed of light is $3 \times 10^{8} \mathrm{~m} / \mathrm{s}$.
b) How long would it take such a ship to reach the Alpha Centauri system which is about 4 lightyears away from the Earth (and is the star system closest to us)? Assume that after reaching $1 / 10$ of the speed of light the spaceship continues to move with that speed.

